【題目】已知,函數(shù),直線(xiàn)l:.
討論的圖象與直線(xiàn)l的交點(diǎn)個(gè)數(shù);
若函數(shù)的圖象與直線(xiàn)l:相交于,兩點(diǎn),證明:.
【答案】(1)見(jiàn)解析(2)見(jiàn)證明
【解析】
根據(jù)函數(shù)與方程的關(guān)系,設(shè),求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性和極值,結(jié)合極值與0的關(guān)系進(jìn)行判斷即可.
構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),結(jié)合與l的交點(diǎn)坐標(biāo),進(jìn)行證明即可.
解:由題意,令,
則,
令,解得.
所以在上單調(diào)遞增,
令,解得,所以在上單調(diào)遞減,
則當(dāng)時(shí),函數(shù)取得極小值,同時(shí)也是最小值
,
當(dāng),即時(shí),的圖象與直線(xiàn)l無(wú)交點(diǎn),
當(dāng),即時(shí)的圖象與直線(xiàn)l只有一個(gè)交點(diǎn).
當(dāng),即時(shí)的圖象與直線(xiàn)l有兩個(gè)交點(diǎn).
綜上所述,當(dāng)時(shí),的圖象與直線(xiàn)l無(wú)交點(diǎn);
時(shí)的圖象與直線(xiàn)l只有一個(gè)交點(diǎn),時(shí)的圖象與直線(xiàn)l有兩個(gè)交點(diǎn).
證明:令,
,
,
,即在上單調(diào)遞增,
,
時(shí),恒成立,
又,
,
,
又
,
在上單調(diào)遞增,
即
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)生產(chǎn)公司投資A生產(chǎn)線(xiàn)500萬(wàn)元,每萬(wàn)元可創(chuàng)造利潤(rùn)萬(wàn)元,該公司通過(guò)引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線(xiàn)A投資減少了x萬(wàn)元,且每萬(wàn)元的利潤(rùn)提高了;若將少用的x萬(wàn)元全部投入B生產(chǎn)線(xiàn),每萬(wàn)元?jiǎng)?chuàng)造的利潤(rùn)為萬(wàn)元,其中.
若技術(shù)改進(jìn)后A生產(chǎn)線(xiàn)的利潤(rùn)不低于原來(lái)A生產(chǎn)線(xiàn)的利潤(rùn),求x的取值范圍;
若生產(chǎn)線(xiàn)B的利潤(rùn)始終不高于技術(shù)改進(jìn)后生產(chǎn)線(xiàn)A的利潤(rùn),求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的值域?yàn)?/span>,記函數(shù).
(1)求實(shí)數(shù)的值;
(2)存在使得不等式成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程有5個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:,直線(xiàn)1過(guò)原點(diǎn)O.
(1)若直線(xiàn)l與圓C相切,求直線(xiàn)l的斜率;
(2)若直線(xiàn)l與圓C交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為,若.求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于復(fù)數(shù)的四個(gè)命題中,正確的個(gè)數(shù)是( )
(1)若,則復(fù)數(shù)對(duì)應(yīng)的動(dòng)點(diǎn)的軌跡是橢圓;
(2)若,則復(fù)數(shù)對(duì)應(yīng)的動(dòng)點(diǎn)的軌跡是雙曲線(xiàn);
(3)若,則復(fù)數(shù)對(duì)應(yīng)的動(dòng)點(diǎn)的軌跡是拋物線(xiàn);
(4)若,則的取值范圍是
A.4B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠去年某產(chǎn)品的年產(chǎn)量為100萬(wàn)只,每只產(chǎn)品的銷(xiāo)售價(jià)為10元,固定成本為8元今年,工廠第一次投入100萬(wàn)元科技成本,并計(jì)劃以后每年比上一年多投入100萬(wàn)元科技成本,預(yù)計(jì)產(chǎn)量年遞增10萬(wàn)只,第次投入后,每只產(chǎn)品的固定成本為為常數(shù),且,若產(chǎn)品銷(xiāo)售價(jià)保持不變,第次投入后的年利潤(rùn)為萬(wàn)元.
(1)求的值,并求出的表達(dá)式;
(2)問(wèn)從今年算起第幾年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍.
(2)若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(t為參數(shù)),曲線(xiàn)C2的參數(shù)方程為(α為參數(shù)),以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)C1和C2的極坐標(biāo)方程;
(2)直線(xiàn)l的極坐標(biāo)方程為,直線(xiàn)l與曲線(xiàn)C1和C2分別交于不同于原點(diǎn)的A,B兩點(diǎn),求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】摩拜單車(chē)和小黃車(chē)等各種共享單車(chē)的普及給我們的生活帶來(lái)了便利.已知某共享單車(chē)的收費(fèi)標(biāo)準(zhǔn)是:每車(chē)使用不超過(guò)1小時(shí)(包含1小時(shí))是免費(fèi)的,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算,例如:騎行2.5小時(shí)收費(fèi)2元).現(xiàn)有甲、乙兩人各自使用該種共享單車(chē)一次.設(shè)甲、乙不超過(guò)1小時(shí)還車(chē)的概率分別為1小時(shí)以上且不超過(guò)2小時(shí)還車(chē)的概率分別為兩人用車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí).
(Ⅰ)求甲乙兩人所付的車(chē)費(fèi)相同的概率;
(Ⅱ)設(shè)甲乙兩人所付的車(chē)費(fèi)之和為隨機(jī)變量求的分布列及數(shù)學(xué)期望
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com