【題目】已知平面多邊形中,,,,,,為的中點,現(xiàn)將三角形沿折起,使.
(1)證明:平面;
(2)求三棱錐的體積.
【答案】(1)詳見解析;(2).
【解析】
(1)取的中點,連,即可證明,結(jié)合即可證明四邊形為平行四邊形,問題得證。
(2)取中點,連接,,先說明平面,即可求得三角形為等邊三角形,取的中點,先說明平面,利用體積變換及中點關(guān)系,將轉(zhuǎn)化成,問題得解。
解:(1)取的中點,連.
∵為中點,∴為的中位線,
∴.
又,∴,
∴四邊形為平行四邊形,∴.
∵平面,平面,
∴平面.
(2)由題意知為等腰直角三角形,為直角梯形.
取中點,連接,,
∵,∴,
∵,,,∴平面,
∴平面,∵平面,∴.
∴在直角三角形中,,,∴,
∴三角形為等邊三角形.
取的中點,則,,,
∴平面,,
∵為的中點,∴到平面的距離等于到平面的距離的一半,
∴
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,四邊形是直角梯形,,,.
(Ⅰ)證明:平面.
(Ⅱ)若平面平面,為的中點,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖所示,已知橢圓的左、右頂點分別為,,右焦點為.設(shè)過點的直線,與此橢圓分別交于點,,其中,,.
(1)設(shè)動點滿足:,求點的軌跡;
(2)設(shè),,求點的坐標(biāo);
(3)設(shè),求證:直線必過軸上的一定點(其坐標(biāo)與無關(guān)),并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會針對居民的學(xué)習(xí)結(jié)果進行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計圖.
(Ⅰ)求得分在上的頻率;
(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)以頻率估計概率,若在全部參與學(xué)習(xí)的居民中隨機抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中是的導(dǎo)數(shù)),求的極小值;
(Ⅱ) 若對,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如上圖所示,在正方體中, 分別是棱的中點, 的頂點在棱與棱上運動,有以下四個命題:
A.平面 ; B.平面⊥平面;
C. 在底面上的射影圖形的面積為定值;
D. 在側(cè)面上的射影圖形是三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論:
①命題“,”的否定是“,”;
②命題“若,則且”的否定是“若,則”;
③命題“若,則或”的否命題是“若,則或”;
④若“是假命題,是真命題”,則命題,一真一假.
其中正確結(jié)論的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四面體中,,平面平面,,且.
(1)證明:平面;
(2)設(shè)為棱的中點,當(dāng)四面體的體積取得最大值時,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com