【題目】給出下列四個(gè)結(jié)論:

①命題“,”的否定是“,”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題,一真一假.

其中正確結(jié)論的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

【答案】B

【解析】

①寫(xiě)出命題“,”的否定,可判斷①的正誤;②寫(xiě)出命題“若,則”的否定,可判斷②的正誤;寫(xiě)出命題“若,則”的否命題,可判斷③的正誤;④結(jié)合復(fù)合命題的真值表,可判斷④的正誤,從而求得結(jié)果.

①命題“,”的否定是:“”,所以①正確;

②命題“若,則”的否定是“若,則”,所以②不正確;

③命題“若,則”的否命題是“若,則”,所以③不正確;

④“是假命題,是真命題”,則命題,一真一假,所以④正確;

故正確命題的個(gè)數(shù)為2,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) ,數(shù)列滿(mǎn)足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在區(qū)間上的函數(shù)的圖象如圖所示,記為,為頂點(diǎn)的三角形的面積為,則函數(shù)的導(dǎo)數(shù)的圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點(diǎn);

(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),曲線(xiàn)的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(Ⅰ)分別求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線(xiàn)交曲線(xiàn)兩點(diǎn),交曲線(xiàn),兩點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在,使得,則a的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為2和4的正方形, = 4且 ⊥底面,點(diǎn)的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點(diǎn),使∥面,

并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,給出滿(mǎn)足的條件,就能得到動(dòng)點(diǎn)的軌跡方程,下表給出了一些條件及方程:

條件

方程

周長(zhǎng)為

面積為

中,

則滿(mǎn)足條件①,②,的軌跡方程依次為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號(hào))

①最大值為,圖象關(guān)于直線(xiàn)對(duì)稱(chēng);

②圖象關(guān)于軸對(duì)稱(chēng);

③最小正周期為;

④圖象關(guān)于點(diǎn)對(duì)稱(chēng);

⑤在上單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊(cè)答案