13.某地一天中6時至14時的溫度變化曲線近似滿足函數(shù)T=Asin(ωt+φ)+b(其中$\frac{π}{2}$<φ<π),6時至14時期間的溫度變化曲線如圖所示,它是上述函數(shù)的半個周期的圖象,那么這一天6時至14時溫差的最大值是20°C;圖中曲線對應的函數(shù)解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

分析 (1)由圖象的最高點與最低點,易于求出這段時間的最大溫差;
(2)A、b可由圖象直接得出,ω由周期求得,然后通過特殊點求φ,則問題解決.

解答 解:(1)由圖示,這段時間的最大溫差是30-10=20℃,
(2)圖中從6時到14時的圖象是函數(shù)y=Asin(ωx+∅)+b的半個周期,
∴$\frac{1}{2}$•$\frac{2π}{ω}$=14-6,解得ω=$\frac{π}{8}$,
由圖示,A=$\frac{1}{2}$(30-10)=10,B=$\frac{1}{2}$(10+30)=20,
這時,y=10sin($\frac{π}{8}$x+φ)+20,
將x=6,y=10代入上式,可取 φ=$\frac{3}{4}$π,
綜上,所求的解析式為 y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].
故答案為:20;y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

點評 本題主要考查由函數(shù)y=Asin(ωx+∅)+b的部分圖象確定其解析式的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)是定義在R上不恒為0的函數(shù),且對于任意的實數(shù)a,b滿足f(2)=2,f(ab)=af(b)+bf(a),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),給出下列命題:
①f(0)=f(1);
②f(x)為奇函數(shù);
③數(shù)列{an}為等差數(shù)列;
④數(shù)列{bn}為等比數(shù)列.
其中正確的命題是①②③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設隨機變量X~N(1,σ2),其正態(tài)分布密度曲線如圖所示,且P(-1<X≤3)=0.9544,那么向正方形OABC中隨機投擲20000個點,則落入陰影部分的點的個數(shù)的估計值為( 。
(附:隨機變量X~N(1,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544)
A.15078B.14056C.13174D.12076

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若直線x+y+1=0與直線ax+y-1=0互相平行,則a的值等于( 。
A.1B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.sin15°=( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知圓C過點O(0,0),和點T(1,3),且圓心在直線n:x-2y=0上,直線l:x+my-2m-1=0,m∈R,
(1)若直線n與直線l平行,求這兩條平行線間的距離;
(2)求圓C的方程;
(3)設直線l恒過定點A,求點A的坐標并判斷點A與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設某一隨機變量X~N(0,1),記P1=P(-2≤X≤-1),P2=P(0≤X≤1),則P1P2的關系是(  )
A.P1<P2B.P1>P2C.P1=P2D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.同時投擲三顆骰子一次,設A=“三個點都不相同“,B=“至少有一個6點,則P(A|B)為(  )
A.$\frac{1}{2}$B.$\frac{60}{91}$C.$\frac{5}{18}$D.$\frac{91}{216}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知圓M:x2+y2-2x=0及點A(0,t),B(0,t+6)(-5≤t≤-2),若圓M是三角形ABC的內切圓,求三角形ABC的面積的最大值與最小值.

查看答案和解析>>

同步練習冊答案