20.若直線x-y+m=0將圓C:x2+y2-2x-1=0分成兩部分的圓弧長之比是1:2,則m=( 。
A.0B.-2C.0或-2D.1

分析 圓C的圓心C(1,0),半徑r=$\sqrt{2}$,設(shè)直線x-y+m=0與圓C:x2+y2-2x-1=0交于A,B,則∠ACB=120°,由余弦定理求出AB=$\sqrt{6}$,再求出圓心C(1,0)到直線x-y+m=0的距離d,由此利用勾股定理能求出m的值.

解答 解:圓C:x2+y2-2x-1=0的圓心C(1,0),半徑r=$\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$,
∵直線x-y+m=0將圓C:x2+y2-2x-1=0分成兩部分的圓弧長之比是1:2,
設(shè)直線x-y+m=0與圓C:x2+y2-2x-1=0交于A,B,
∴∠ACB=120°,AB=$\sqrt{2+2-2×\sqrt{2}×\sqrt{2}×cos120°}$=$\sqrt{6}$,
圓心C(1,0)到直線x-y+m=0的距離d=$\frac{|1+m|}{\sqrt{2}}$,
由勾股定理,得${r}^{2}=vfhpceb^{2}+(\frac{AB}{2})^{2}$,
即2=$\frac{(1+m)^{2}}{2}+\frac{6}{4}$,
解得m=0.
故選:A.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意圓的性質(zhì)、點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}中,a1=1,且當(dāng)n∈N*時,有$\frac{1}{n+1}$a1+$\frac{2}{n+1}$a2+$\frac{3}{n+1}$a3+…+$\frac{n}{n+1}$an=$\frac{1}{2}$an+1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在邊長為2的正方形AP1P2P3中,點(diǎn)B、C分別是邊P1P2、P2P3的中點(diǎn),沿AB、BC、CA翻折成一個三棱錐P-ABC,使P1、P2、P3重合于點(diǎn)P,則三棱錐P-ABC的外接球的表面積為( 。
A.B.C.12πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知過原點(diǎn)O的動直線l與圓C:(x+1)2+y2=4交于A、B兩點(diǎn).
(Ⅰ)若|AB|=$\sqrt{15}$,求直線l的方程;
(Ⅱ)x軸上是否存在定點(diǎn)M(x0,0),使得當(dāng)l變動時,總有直線MA、MB的斜率之和為0?若存在,求出x0的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知在三棱錐P-ABC中,PA=PB=BC=1,AB=$\sqrt{2}$,AB⊥BC,平面PAB⊥平面ABC,若三棱錐的頂點(diǎn)在同一個球面上,則該球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.4個半徑為1的球兩兩相切,該幾何體的外切正四面體的高是4+$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了解某班學(xué)生喜愛體育運(yùn)動是否與性別相關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛體育運(yùn)動不喜愛體育運(yùn)動合計
男生5
女生10
合計50
已知在全部女生中隨機(jī)調(diào)查2人,恰好調(diào)查到的2位女生都喜愛體育運(yùn)動的概率為$\frac{3}{20}$
(1)請將上面的列聯(lián)表補(bǔ)充完整(不用寫計算過程)
(2)能偶在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛體育運(yùn)動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l:mx+$\sqrt{2}$ny=2與圓O:x2+y2=1交于A、B兩點(diǎn),若△AOB為直角三角形,則點(diǎn)M(m,n)到點(diǎn)P(-2,0)、Q(2,0)的距離之和( 。
A.最大值為6$\sqrt{2}$B.最小值為3$\sqrt{2}$C.是一個常數(shù)4$\sqrt{3}$D.是一個常數(shù)4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2,點(diǎn)M在線段PD上.
(I)求證:AB⊥PC;
(Ⅱ)若二面角M-AC-D的余弦值為$\frac{\sqrt{5}}{5}$,求BM與平面PAC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案