12.為了解某班學(xué)生喜愛(ài)體育運(yùn)動(dòng)是否與性別相關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)體育運(yùn)動(dòng)不喜愛(ài)體育運(yùn)動(dòng)合計(jì)
男生5
女生10
合計(jì)50
已知在全部女生中隨機(jī)調(diào)查2人,恰好調(diào)查到的2位女生都喜愛(ài)體育運(yùn)動(dòng)的概率為$\frac{3}{20}$
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程)
(2)能偶在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由;
下面的臨界值表供參考:
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.其中n=a+b+c+d)

分析 (1)根據(jù)在全部女生中隨機(jī)調(diào)查2人,恰好調(diào)查到的2位女生都喜愛(ài)體育運(yùn)動(dòng)的概率為$\frac{3}{20}$,求出全部女生人數(shù),即可得到列聯(lián)表;
(2)根據(jù)公式計(jì)算K2,對(duì)照臨界值表作結(jié)論.

解答 解:(1)設(shè)女生共有n人,則$\frac{{C}_{10}^{2}}{{C}_{n}^{2}}$=$\frac{3}{20}$,∴n=25
列聯(lián)表如下:

 喜好體育運(yùn)動(dòng)不喜好體育運(yùn)動(dòng)合計(jì)
男生 20 5 25
女生 10 15 25
合計(jì) 30 20 50
(2)K2=$\frac{50(20×15-5×10)^{2}}{25×25×30×20}$=8.333>7.879.
∴在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān).

點(diǎn)評(píng) 本題考查分層抽樣的統(tǒng)計(jì)原理,獨(dú)立性檢驗(yàn)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如果△ABC的三邊a,b,c滿(mǎn)足a3+b3+a2b+ab2-ac2-bc2=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.三棱椎S-ABC中,SA⊥面ABC,△ABC為等邊三角形,SA=2,AB=3,則三棱錐S-ABC的外接球的表面積為( 。
A.B.C.16πD.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若直線(xiàn)x-y+m=0將圓C:x2+y2-2x-1=0分成兩部分的圓弧長(zhǎng)之比是1:2,則m=( 。
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在一次高三數(shù)學(xué)模擬測(cè)驗(yàn)中,對(duì)本班“選考題”選答情況進(jìn)行統(tǒng)計(jì)結(jié)果如下:
選修4-1選修4-4選修4-5
男生(人)1064
女生(人)2614
(Ⅰ)在統(tǒng)計(jì)結(jié)果中,如果把“選修4-1”和“選修4-4”稱(chēng)為“幾何類(lèi)”,把“選修4-5”稱(chēng)為“非幾何類(lèi)”,能否有99%的把握認(rèn)為學(xué)生選答“幾何類(lèi)”與性別有關(guān)?
(Ⅱ)已知本班的兩名數(shù)學(xué)課代表都選答的是“選修4-5”,現(xiàn)從選答“選修4-1”、“選修4-4”和“選修4-5”的同學(xué)中,按分層抽樣的方法隨機(jī)抽取7人,記抽取到數(shù)學(xué)課代表的人數(shù)為X,求X得分布列及數(shù)學(xué)期望.
附:.
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知球O的內(nèi)接圓柱的軸截面是邊長(zhǎng)為2的正方形,則球O的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓C:x2+y2-8y+12=0,直線(xiàn)l:ax+y+2a=0.當(dāng)直線(xiàn)l與C相切時(shí),實(shí)數(shù)a=$±\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知A,B是球O的球面上兩點(diǎn),∠AOB=90°,C為該球面上的動(dòng)點(diǎn),若三棱錐O-ABC體積的最大值為$\frac{32}{3}$,則球O的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.執(zhí)行下面的程序輸出的結(jié)果是15.

查看答案和解析>>

同步練習(xí)冊(cè)答案