【題目】已知數(shù)列{an}的首項為a1= ,且2an+1=an(n∈N+).
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,求{bn}的前n項和Tn .
【答案】
(1)解:由于數(shù)列{an}滿足a1= ,且2an+1=an(n∈N+).
所以數(shù)列{an}是首項為 ,公比為 的等比數(shù)列.
∴an= ×( )n﹣1=( )n
(2)解:由已知bn= =n2n.
∴Tn=1×2+2×22+3×23+…+(n﹣1)2n﹣1+n2n.
∴2Tn=1×22+2×23+…+(n﹣2)2n﹣1+(n﹣1)2n+n2n+1
∴相減可得﹣Tn=1×2+1×22+1×23+…+1×2n﹣1+1×2n﹣n2n+1
= ﹣n2n+1
=2n+1﹣2﹣n2n+1,
∴Tn=(n﹣1)2n+1+2
【解析】(1)由等比數(shù)列的定義和通項公式,即可得到所求;(2)求得bn= =n2n . 由數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.
【考點精析】解答此題的關鍵在于理解數(shù)列的前n項和的相關知識,掌握數(shù)列{an}的前n項和sn與通項an的關系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l過點M(﹣1,2)且與以P(﹣2,﹣3),Q(4,0)為端點的線段PQ相交,則l的斜率的取值范圍是( )
A.[﹣ ,5]
B.[﹣ ,0)∪(0,5]
C.[﹣ , )∪( ,5]
D.(﹣∞,﹣ ]∪[5,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四凌錐S﹣ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中點,且SA=AB=BC=2,AD=1.
(1)求證:DM∥平面SAB;
(2)求四棱錐S﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是( )
A.35
B.﹣3
C.3
D.﹣0.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對同一類的, , , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:
甲說:“或作品獲得一等獎”
乙說:“作品獲得一等獎”
丙說:“, 兩項作品未獲得一等獎”
丁說:“作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A,B分別是直線y=x和y=﹣x上的兩個動點,線段AB的長為2 ,D是AB的中點.
(1)求動點D的軌跡C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,
①當|PQ|=3時,求直線l的方程;
②試問在x軸上是否存在點E(m,0),使 恒為定值?若存在,求出E點的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com