A. | 小于1 | B. | 等于1 | C. | 大于1 | D. | 由b的符號確定 |
分析 先根據(jù)二次函數(shù)的性質(zhì)得到對稱軸為x=2,則可得到m+n=4,根據(jù)對數(shù)的運(yùn)算性質(zhì)和基本不等式即可得到答案.
解答 解:函數(shù)f(x)=x2+bx+c滿足f(2-x)=f(2+x),
∴函數(shù)的對稱軸為x=2,
∵f(m)=f(n)=0(m≠n),
∴m+n=4,
∴mn<($\frac{m+n}{2}$)2=4
∴l(xiāng)og4m-log${\;}_{\frac{1}{4}}$n=log4m+log4n=log4mn<log44=1,
故選:A
點(diǎn)評 本題考查了二次函數(shù)的性質(zhì),對數(shù)的運(yùn)算性質(zhì)和基本不等式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,-$\frac{1}{2}$) | B. | [-3,-$\frac{1}{2}$] | C. | [-5,-$\frac{1}{2}$) | D. | [-5,-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$R | B. | $\frac{\root{3}{3}}{3}$R | C. | $\frac{\root{3}{25}}{5}$R | D. | $\frac{\sqrt{3}}{3}$R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com