分析 由數(shù)列{an}滿(mǎn)足a1=1,an+1=2an+n-1,變形為an+1+(n+1)=2(an+n),即可數(shù)列{an+n}是等比數(shù)列,其中首項(xiàng)為a1+1=2,公比為2.求出通項(xiàng)公式
再利用等比數(shù)列的通項(xiàng)公式、等比數(shù)列與等差數(shù)列的前n項(xiàng)和公式即可得出,代值計(jì)算即可.
解答 解:由數(shù)列{an}滿(mǎn)足a1=1,an+1=2an+n-1,變形為an+1+(n+1)=2(an+n).
∴數(shù)列{an+n}是等比數(shù)列,其中首項(xiàng)為a1+1=2,公比為2,
∴an+n=2×2n-1,
∴an=2n-n
∴Sn=$\frac{2({2}^{n}-1)}{2-1}$-$\frac{n(n+1)}{2}$=2n+1-2-$\frac{n(n+1)}{2}$,
∴S10=211-2-$\frac{10(10+1)}{2}$=1991
故答案為:1991.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式和等比數(shù)列的通項(xiàng)公式、等比數(shù)列與等差數(shù)列的前n項(xiàng)和公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2或6 | B. | 0或8 | C. | 2或0 | D. | 6或8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (-∞,1)∪(2,+∞) | C. | (-∞,2) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com