【題目】已知平面多邊形中,,,,,,的中點,現(xiàn)將三角形沿折起,使.

(1)證明:平面;

(2)求三棱錐的體積.

【答案】(1)詳見解析;(2).

【解析】

1)取的中點,連,即可證明,結(jié)合即可證明四邊形為平行四邊形,問題得證。

2)取中點,連接,,先說明平面,即可求得三角形為等邊三角形,取的中點,先說明平面,利用體積變換及中點關(guān)系,將轉(zhuǎn)化成,問題得解。

解:(1)取的中點,連.

中點,∴的中位線,

.

,∴,

∴四邊形為平行四邊形,∴.

平面,平面

平面.

(2)由題意知為等腰直角三角形,為直角梯形.

中點,連接,,

,∴,

,,∴平面,

平面,∵平面,∴.

∴在直角三角形中,,,∴

∴三角形為等邊三角形.

的中點,則,

平面,,

的中點,∴到平面的距離等于到平面的距離的一半,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的上焦點為圓心,橢圓的短半軸為半徑的圓與直線截得的弦長為.

(1)求橢圓的方程;

(2)過橢圓左頂點做兩條互相垂直的直線,且分別交橢圓于兩點(,不是橢圓的頂點),探究直線是否過定點,若過定點則求出定點坐標(biāo),否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,點分別為棱的中點.

(Ⅰ)求證:∥平面

()求證:平面平面;

()在線段上是否存在一點,使得直線與平面所成的角為300?如果存在,求出線段的長;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時,求函數(shù)vx)的表達(dá)式;

2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在三棱錐中,是直角三角形,,,,點、、分別為、的中點.

1)求證:

2)求直線與平面所成的角的正弦值;

3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直棱柱中,分別是的中點,

1)證明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別成為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h)實驗的觀測結(jié)果如下:

服用A藥的20位患者日平均增加的睡眠時間:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B藥的20位患者日平均增加的睡眠時間:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果來看,哪種藥的效果好?

2)完成莖葉圖,從莖葉圖來看,哪種藥療效更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步練習(xí)冊答案