若函數(shù)f(x)滿(mǎn)足f(x+1)=f(x-1),且當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與函數(shù)y=lgx的圖象的交點(diǎn)個(gè)數(shù)為( 。
A、7個(gè)B、8個(gè)C、9個(gè)D、10個(gè)
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)的圖象
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先證明函數(shù)f(x)的周期性,再利用函數(shù)周期性畫(huà)出函數(shù)f(x)的圖象,在同一直角坐標(biāo)系下再畫(huà)出函數(shù)y=lgx的圖象,數(shù)形結(jié)合即可求得交點(diǎn)個(gè)數(shù)
解答: 解:∵f(x+1)=f(x-1),∴f(x+2)=f(x),∴函數(shù)f(x)為周期為2的周期函數(shù)
∵x∈[-1,1]時(shí),f(x)=x2,
∴函數(shù)f(x)的圖象和y=lgx的圖象如圖:

由圖數(shù)形結(jié)合可得函數(shù)y=f(x)與函數(shù)y=lgx的圖象的交點(diǎn)個(gè)數(shù)為9個(gè)
故選:C.
點(diǎn)評(píng):本題主要考查了利用函數(shù)圖象數(shù)形結(jié)合解決圖象交點(diǎn)問(wèn)題的方法,利用函數(shù)的周期性畫(huà)周期函數(shù)的圖象,對(duì)數(shù)函數(shù)的圖象和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=px2+qx+r(p≠0,p<r),滿(mǎn)足f(0)<0且f(-
q
2p
)>0,設(shè)△ABC的三個(gè)內(nèi)角分別為A、B、C,tanA,tanB為函數(shù)f(x)的兩個(gè)零點(diǎn),則△ABC一定是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
x→1
x4-1
x3-1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(-1,cosωx+
3
sinωx),
n
=(f(x),cosωx),其中ω>0,且
m
n
,又函數(shù)f(x)的圖象任意兩相鄰對(duì)稱(chēng)軸間距為
3
2
π.
(Ⅰ)求ω的值;
(Ⅱ)設(shè)α是第一象限角,且f(
3
2
α+
π
2
)=
23
26
,求
sin(α+
π
4
)
cos(4π+2α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,則
1
21007
2
1+i
2014=( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x-i)i=y+2i(x,y∈R),則復(fù)數(shù)x+yi=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m=1”是“直線(xiàn)mx+y=1與直線(xiàn)x-my=1互相垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

R表示實(shí)數(shù)集,集合M={x∈R|0<log3x<1},N={x∈R|(x-1)(x-2)<0},則( 。
A、M∩N=M
B、M∪N=N
C、(∁RN)∩M=∅
D、(∁RM)∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+
1
2
x(x<0)
ex-1(x≥0)
,若函數(shù)y=f(x)-kx有3個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案