“m=1”是“直線mx+y=1與直線x-my=1互相垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分必要條件的定義結(jié)合直線垂直的性質(zhì),從而得到答案.
解答: 解:若m=1,則直線x+y=1和直線x-y=1互相垂直,是充分條件;
若直線mx+y=1與直線x-my=1互相垂直,則m取任意實(shí)數(shù),不是必要條件;
故選:A.
點(diǎn)評:本題考查了充分必要條件,考查了直線垂直的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn=λ•2n-1-1(λ∈R)
(1)求λ 值,并求出數(shù)列{an}的通項(xiàng)公式;
(2)將函數(shù)f(x)=a3sin(a2x)向左平移
π
6
個(gè)單位得到g(x)的圖象,求g(x)在[-
π
6
,
π
6
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足x2+y2+2x-4y+1=0,則
x2+y2-2x+1
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與函數(shù)y=lgx的圖象的交點(diǎn)個(gè)數(shù)為( 。
A、7個(gè)B、8個(gè)C、9個(gè)D、10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
2
1+i
對應(yīng)的點(diǎn)所在象限是( 。
A、一B、二C、三D、四

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)Z=
2i
1+i
(i為虛數(shù)單位)的虛部為(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2,
a
b
的夾角為60°,則
a
+
b
a
方向上的投影為( 。
A、2
B、1
C、
2
7
7
D、
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過圓x2+y2-4x-6y-1=0的圓心,且與直線x-y=0垂直的直線方程為( 。
A、x-y+1=0
B、x+y+5=0
C、x+y-5=0
D、x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題P:函數(shù)f(x)=(
1
3
)x
-sinx至少有兩個(gè)零點(diǎn),對于命題P的否定,下列說法正確的是( 。
A、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有兩個(gè)零點(diǎn),且命題P的否定是真命題
B、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有一個(gè)零點(diǎn),且命題P的否定是真命題
C、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有兩個(gè)零點(diǎn),且命題P的否定是假命題
D、命題P的否定:函數(shù)f(x)=(
1
3
)x-sinx
至多有一個(gè)零點(diǎn),且命題P的否定是假命題

查看答案和解析>>

同步練習(xí)冊答案