10.2013年4月20日,四川省雅安市發(fā)生7.0級(jí)地震,某運(yùn)輸隊(duì)接到給災(zāi)區(qū)運(yùn)送物資任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送720t救災(zāi)物資.已知每輛卡車每天往返的次數(shù)為A型車16次,B型車12次,每輛卡車每天往返的成本為A型車240元,B型車378元,問每天派出A型車與B型車各多少輛,運(yùn)輸隊(duì)所花的成本最低?

分析 設(shè)每天派出A型車x輛,B型車y輛,由題意列出約束條件,作出可行域,求出使目標(biāo)函數(shù)取得最小值的整解得答案.

解答 解:設(shè)每天派出A型車x輛,B型車y輛,則A型車每天運(yùn)物96x(0≤x≤8)噸,每天往返成本費(fèi)240x元;
B型車每天運(yùn)物120y(0≤y≤4)噸,每天往返成本費(fèi)378y元;
公司總成本為z=240x+378y,
滿足約束條件的可行域$\left\{\begin{array}{l}{0≤x≤8}\\{0≤y≤6}\\{x+y≤10}\\{96x+120y≥720}\end{array}\right.$如圖示:
由圖可知,當(dāng)x=8,y=-0.4時(shí),z有最小值,但是A(0,-0.4)不合題意,
目標(biāo)函數(shù)向上平移過C(7.5,0)時(shí),不是整解,繼續(xù)上移至B(8,0)時(shí),
z=240×8+378×0=1920有最小值,最小值為1920元.
即當(dāng)每天應(yīng)派出A型車8輛、B型車0輛,能使公司總成本最低,最低成本為1920元.

點(diǎn)評(píng) 本題解題的關(guān)鍵是列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù),同時(shí)注意整點(diǎn)的選取,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在三棱錐V-ABC中,D、E、F分別是VA、VB、VC上的點(diǎn)并且$\frac{AD}{AV}$=$\frac{AE}{AC}$=$\frac{VF}{VB}$=$\frac{CG}{CB}$=$\frac{1}{3}$.求證:直線DF、EG、AB共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.分別作出函數(shù)①y=-3x+1,②y=x2+2x的圖象,并根據(jù)圖象回答以下兩個(gè)問題:
(1)以上兩個(gè)函數(shù)有無最大值或最小值?如果有,請求出.
(2)以上兩個(gè)函數(shù)在(-∞,+∞)上是否是單調(diào)函數(shù)?如果不是,請說出它的變化趨勢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1,DD1的中點(diǎn).
(1)證明:A,E,C1,F(xiàn)四點(diǎn)共面;
(2)畫出平面AEC1F與平面ABCD的交線(寫出畫法和理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知關(guān)于x不等式2x2+bx-c>0的解集為{x|x<-1或x>3},則關(guān)于x的不等式bx2+cx+4≥0的解集為( 。
A.{x|x≤-2或x≥$\frac{1}{2}$}B.{x|x≤-$\frac{1}{2}$或x≥2}C.{x|-$\frac{1}{2}$≤x≤2}D.{x|-2≤x≤$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}為等比數(shù)列,前n項(xiàng)和為Sn,若S3S5-${S}_{4}^{2}$=-16,a2a4=32,求S4的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.畫出不等式組$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$表示的平面區(qū)域,并回答下列問題:
(1)指出x,y的取值范圍;
(2)平面區(qū)域內(nèi)有多少個(gè)整點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等比數(shù)列{an}的公比q>1,前n項(xiàng)和為Sn,則$\underset{lim}{n→∞}$$\frac{{S}_{n+2}}{{S}_{n}}$=q2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知(1+ax)5(1-2x)4的展開式中x2的系數(shù)為-16,則實(shí)數(shù)a的值為( 。
A.-1B.-2C.1D.2

查看答案和解析>>

同步練習(xí)冊答案