設(shè)f(x)是R上的奇函數(shù),且f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x,則f(4.5)=
 
考點:抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇函數(shù)定義與條件f(x+2)=-f(x),把f(4.5)的自變量轉(zhuǎn)化到[0,1]的范圍內(nèi)即可.
解答: 解:因為f(x+2)=-f(x),
所以f(4.5)=-f(2.5),f(2.5)=-f(0.5),
所以f(4.5)=f(0.5).
因為0≤x≤1時,f(x)=x,
故f(4.5)=f(0.5)=0.5
故答案為:0.5.
點評:本題考查奇函數(shù)定義及f(x+T)=-f(x)的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象如圖所示,設(shè)M=|a+b+c|-|a-b+c|+|2a+b|-|2a-b,則( 。
A、M>0B、M≥0
C、M<0D、M=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-lnx
1+lnx
的導(dǎo)函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β為銳角,cosα=
1
2
,sin(β-α)=
3
5
,則sinβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax2+(2-a)x,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,A={x||x-1|<4},B={x|x2-2x≥0},求A∩B,A∪B,A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)α為第一象限角時,證明:
sinα
1-cosα
tanα-sinα
tanα+sinα
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如表數(shù)據(jù):
(1)畫出散點圖;
(2)求回歸直線方程;
X24568
Y3040605070
(3)試預(yù)測廣告費支出為10百萬元時,銷售額多大?
(參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①命題“?x∈R,x2+x+4≤0”的否定是“?x∈R,x2+x+4≥0”;
②“am2<bm2”是“a<b”的充分不必要條件;
③命題“對邊平行且相等的四邊形是平行四邊形”不是全稱命題;
④命題p:?x0∈[-1,1]滿足x20+x0+1>a,使命題p為真命題的實數(shù)a的取值范圍為a<3.
其中正確的命題有
 
(填序號).

查看答案和解析>>

同步練習(xí)冊答案