【題目】如圖,正方形所在平面與三角形所在平面互相垂直,且, .
(1)求證: 平面;
(2)若, ,求直線與平面所成的角的正弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)在上取一點(diǎn),使,根據(jù)平幾知識可得為平行四邊形,即得,再根據(jù)線面平行判定定理得結(jié)論(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解平面法向量,根據(jù)向量數(shù)量積求直線方向向量與法向量夾角,最后根據(jù)線面角與向量夾角互余關(guān)系求直線與平面所成的角的正弦值.
試題解析:(1)在上取一點(diǎn),使,連接.
由已知,在中, ,
所以且.
又在正方形中, ,
所以且.
所以且.
所以,四邊形為平行四邊形.
所以.
又平面, 平面 平面.
(2)以為坐標(biāo)原點(diǎn),分別以所在的直線為軸、軸,以過垂直于的直線為軸,建
立如圖所示的空間直角坐標(biāo)系.
設(shè),則, , , ,,,
所以,,.
設(shè)平面的一個(gè)法向量,則,即,
不妨令,得,
設(shè)直線與平面所成的角為,則
.
所以直線與平面所成的角正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD的頂點(diǎn)C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點(diǎn)B在平面α上的射影為點(diǎn)O,當(dāng)頂點(diǎn)A與點(diǎn)O的距離最大時(shí),直線CD與平面α所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且定義域?yàn)?/span>.
(1)求關(guān)于的方程在上的解;
(2)若在區(qū)間上單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?/span> ( )
(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時(shí)間開始加速;
(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間.
A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】加工爆米花時(shí),爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時(shí)間t(單位:分鐘)滿足函數(shù)關(guān)系(a,b,c是常數(shù)),如圖記錄了三次實(shí)驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可以得到最佳加工時(shí)間為________分鐘.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg,
(1)求f(x)的定義域并判斷它的奇偶性.
(2)判斷f(x)的單調(diào)性并用定義證明.
(3)解關(guān)于x的不等式f(x)+f(2x2﹣1)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個(gè)交點(diǎn)把圓C分成的四條弧長相等,則m=( )
A.0或1
B.0或﹣1
C.1或﹣1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,集合.
(1)若“”是“”的必要條件,求實(shí)數(shù)的取值范圍;
(2)若中只有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com