4.?dāng)?shù)學(xué)與文學(xué)有許多奇妙的聯(lián)系,如詩中有回文詩:“兒憶父兮妻憶夫”,既可以順讀也可以逆讀,數(shù)學(xué)中有回文數(shù),如343,12521等,兩位數(shù)的回文數(shù)有11、22、33、…99共9個,則三位數(shù)的回文數(shù)中,偶數(shù)的概率是$\frac{4}{9}$.

分析 利用列舉法列舉出所有的三位回文數(shù)的個數(shù),再列舉出其中所有的偶數(shù)的個數(shù),由此能求出結(jié)果.

解答 解:三位數(shù)的回文數(shù)為ABA,
A共有1到9共9種可能,即1B1、2B2、3B3…
B共有0到9共10種可能,即A0A、A1A、A2A、A3A、…
共有9×10=90個,
其中偶數(shù)為A是偶數(shù),共4種可能,即2B2,4B4,6B6,8B8,
B共有0到9共10種可能,即A0A、A1A、A2A、A3A、…
其有4×10=40個,
∴三位數(shù)的回文數(shù)中,偶數(shù)的概率p=$\frac{40}{90}=\frac{4}{9}$.
故答案為:$\frac{4}{9}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.等差數(shù)列{an}中,若a2+a5+a8=27,則a5=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”做了一次調(diào)查,共調(diào)查了26名男同學(xué)、24名女孩同學(xué).調(diào)查的男生中有8人不喜歡玩電腦游戲,其余男生喜歡玩電腦游戲;而調(diào)查的女生中有9人喜歡玩電腦游戲,其余女生不喜歡電腦游戲.
(1)根據(jù)以上數(shù)據(jù)填寫如下2×2的列聯(lián)表:
性別
對游戲態(tài)度
男生女生合計
喜歡玩電腦游戲18927
不喜歡玩電腦游戲81523
合計262450
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“喜歡玩電腦游戲與性別關(guān)系”?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.050.0250.010
k03.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市舉辦校園足球賽,組委會為了做好服務(wù)工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡.
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽不喜歡看足球比賽總計
總計
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認(rèn)為性別與喜歡看足球比賽有關(guān)?
(3)在志愿者中,有兩男兩女能做播音員工作,恰有一男一女播音的概率是多少?
附:參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1的離心率為(  )
A.$\frac{4}{5}$B.$\frac{5}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若曲線f(x)=ax+ex存在垂直于y軸的切線,則實數(shù)a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若變量x、y滿足約束條件:$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,則y-2x的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=Asin(ωx+ϕ)(A,ω,ϕ為常數(shù),且A>0,ω>0,0<ϕ<π)的部分圖象如圖所示.
(1)求A,ω,ϕ的值;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.試通過建立空間直角坐標(biāo)系,利用空間向量解決下列問題:
如圖,已知四邊形ABCD和BCEF均為直角梯形,AD∥BC,CE∥BF,且∠BCD=∠BCE=90°,平面ABCD⊥平面PCEF,BC=CD=CE=2AD=2BF=2
(Ⅰ)證明:AF∥平面BDE
(Ⅱ)求銳二面角A-DE-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案