17.五本不同的書在書架上排成一排,其中甲,乙兩本必須連排,而丙,丁兩本不能連排,則不同的排法共( 。
A.12種B.20種C.24種D.48種

分析 根據(jù)題意,分3步進(jìn)行分析:①、甲,乙兩本必須連排,用捆綁法將甲乙看成一個(gè)整體,并考慮甲乙之間的順序,②、將這個(gè)整體與除丙丁之外的元素全排列,③、在排好后的3個(gè)空位中,任選2個(gè),安排丙,丁兩本書,分別求出每一步的情況數(shù)目,由分步計(jì)算原理計(jì)算可得答案.

解答 解:根據(jù)題意,分3步進(jìn)行分析:
①、甲,乙兩本必須連排,將甲乙看成一個(gè)整體,考慮甲乙之間的順序,有A22=2種情況,
②、將這個(gè)整體與除丙丁之外的元素全排列,有A22=2種情況,排好后,有3個(gè)空位,
③、在3個(gè)空位中,任選2個(gè),安排丙,丁兩本書,有A32=6種情況,
則不同的排法有2×2×6=24種;
故選:C.

點(diǎn)評(píng) 本題考查排列、組合的應(yīng)用,注意相鄰問題與不能相鄰問題的處理方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知某產(chǎn)品的廣告費(fèi)x(單位:萬元)與銷售額y(單位:萬元)具有線性相關(guān)關(guān)系,其統(tǒng)計(jì)數(shù)據(jù)如下表:
X3456
Y25304045
由上表可得線性回歸方程y=$\widehat$x+a,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為8萬元時(shí)的銷售額是(  )
A.59.5B.52.5C.56D.63.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.《中國詩詞大會(huì)》第二季總決賽已于2017年2月初完美收官,來自全國各地的選手們通過答題競(jìng)賽的方式傳播中國古詩詞,從詩經(jīng)、漢魏六朝詩、唐宋詩詞、明清詩詞-直到毛澤東詩詞,展現(xiàn)了對(duì)中國傳統(tǒng)文化經(jīng)典的傳承與熱愛,比賽采用闖關(guān)的形式,能闖過上一關(guān)者才能進(jìn)人下一關(guān)測(cè)試,否則即被淘汰.已知某選手能闖過笫一、二、三關(guān)的概率分別為$\frac{4}{5},\frac{3}{5},\frac{2}{5}$,且能否闖過各關(guān)互不影響.
(1)求該選手在第3關(guān)被淘汰的概率;
(2)該選手在測(cè)試中闖關(guān)的次數(shù)記為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期塑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),x=$\sqrt{3}$y為雙曲線C的一條漸近線,則雙曲線C的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow a$和$\overrightarrow b$的夾角為120°,且$|\overrightarrow a|=2,|\overrightarrow b|=1$.
(1)求$(2\overrightarrow a-\overrightarrow b)•\overrightarrow a$的值;
(2)求$|\overrightarrow a+2\overrightarrow b|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正三棱錐P-ABC的側(cè)棱長為2,若二面角P-AB-C的余弦值為$\frac{{\sqrt{13}}}{13}$,則三棱錐P-ABC的體積為(  )
A.$\frac{3}{4}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f'(x)是奇函數(shù)f(x)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),f′(x)<$\frac{f(x)}{x}$,則使得f(x)>0成立的x的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow m=(cos\frac{x}{2},sin\frac{x}{2})$,$\overrightarrow n=(-\sqrt{3},1)$,則$|\overrightarrow m-\overrightarrow n|$的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,若$\overrightarrow a與\overrightarrow b的夾角為\frac{π}{3}$,則$\overrightarrow a•({\overrightarrow a+\overrightarrow b})$的值等于(  )
A.4B.5C.6D.$4+\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案