4.若直線l1:ax+2y+6=0與直線${l_2}:x+(a-1)y+{a^2}-1=0$平行,則a=(  )
A..2或-1B..2C.-1D.以上都不對

分析 由直線平行可得a(a-1)-2×1=0,解方程驗證可得.

解答 解:∵直線l1:ax+2y+6=0與直線${l_2}:x+(a-1)y+{a^2}-1=0$平行,
∴a(a-1)-2×1=0,解得a=2,或a=-1
當a=2時,兩直線重合.
故選:C.

點評 本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{x}{(1-x)^{2}}$的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點M是直線l:y=$\sqrt{3}$x-4與y軸的交點,把直線l繞點M逆時針旋轉(zhuǎn)60°,求所得直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知x,y滿足(x-2)2+(y-3)2=1,則z=x2+y2的最小值為14-2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知動圓過定點R(0,2),且在x軸上截得線段MN的長為4,直線l:y=kx+t(t>0)交y軸于點Q.
(1)求動圓圓心的軌跡E的方程;
(2)直線l與軌跡E交于A,B兩點,分別以A,B為切點作軌跡E的切線交于點P,若|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|.試判斷實數(shù)t所滿足的條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某初中對初二年級的學生進行體質(zhì)測試,已知初二一班共有學生30人,測試立定跳遠的成績用莖葉圖表示如下(單位:cm):
男生成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下(不包括175cm)定義為“不合格”;
女生成績在165cm以上(包括165cm)定義為“合格”,成績在165cm以下(不包括165cm)定義為“不合格”.
(1)求女生立定跳遠成績的中位數(shù);
(2)若在男生中用分層抽樣的方法抽取6個人,求抽取成績“合格”的學生人數(shù);
(3)若從全班成績“合格”的學生中選取2個人參加復試,用X表示其中男生的人數(shù),試寫出X的分布列,并求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良101-150為輕度污染;151-200為中度污染;201~300為重度污染;>300為嚴重污染.
一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖.
(Ⅰ)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天)
(Ⅱ)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為ξ,求ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在長方體ABCD-A1B1C1D1中,已知AD=AA1=1,AB=2,點E是AB的中點.
(1)求三棱錐C-DD1E的體積;
(2)求證:D1E⊥A1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.關(guān)于函數(shù)f(x)=|sinx|+|cosx|(x∈R),有如下結(jié)論:
①函數(shù)f(x)的周期是$\frac{π}{2}$;
②函數(shù)f(x)的值域是[0,$\sqrt{2}$];
③函數(shù)f(x)的圖象關(guān)于直線x=$\frac{3π}{4}$對稱;
④函數(shù)f(x)在($\frac{π}{2}$,$\frac{3π}{4}$)上遞增.
其中正確命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案