在△ABC中,已知sinB+sinC=sinA(cosB+cosC).
(1)判斷△ABC的形狀;
(2)若角A所對的邊a=1,試求△ABC內(nèi)切圓半徑的取值范圍.
(1)由已知等式利用正、余弦定理得b+c=a(
a2+c2-b2
2ac
+
a2+b2-c2
2ab
),…(3分)
整理得(b+c)(b2+c2-a2)=0,
∴b2+c2=a2,
∴△ABC為直角三角形,且∠A=90°.…(6分)
(2)由△ABC為直角三角形,
知內(nèi)切圓半徑r=
b+c-a
2
=
1
2
(sinB+sinC-1)=
1
2
(sinB+sinB-1),…(11分)
∵sinB+sinB=
2
sin(B+
π
4
)≤
2
,
∴0<r≤
2
-1
2
.…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,,定義函數(shù)f(x)=·.
(1)求函數(shù)f(x)的表達(dá)式,并指出其最大值和最小值;
(2)在銳角△ABC中,角A,BC的對邊分別為a,bc,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知sinθ,cosθ是關(guān)于x的二次方程x2-(
3
-1)x+m=0,(m∈R)的兩個(gè)實(shí)數(shù)根,求:
(1)m的值;
(2)
cosθ-sinθtanθ
1-tanθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知向量
AB
=(cos120°,sin120°),
BC
=(cos30°,sin45°)
,則△ABC的形狀為( 。
A.直角三角形B.等腰三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
AC
=(cos
x
2
+sin
x
2
,-sin
x
2
),
BC
=(cos
x
2
-sin
x
2
,2cos
x
2
)
,設(shè)f(x)=
AC
BC

(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)設(shè)關(guān)于x的方程f(x)=a在[-
π
2
,
π
2
]有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△她BC中,已知sinC=2sin她cosB,那么△她BC一定是( 。
A.等腰直角三角形B.等腰三角形
C.直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文)已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期為4π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)角的終邊在第一象限,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051415810362.png" style="vertical-align:middle;" />,且,當(dāng)時(shí),有,則使等式成立的的集合為                .                          

查看答案和解析>>

同步練習(xí)冊答案