【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x) 是k型函數(shù).給出下列說法:
①f(x)=3﹣ 不可能是k型函數(shù);
②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為 .
下列選項(xiàng)正確的是( )
A.①③
B.②③
C.②④
D.①④
【答案】C
【解析】解:對于①,f(x)的定義域是{x|x≠0},且f(2)=3﹣ =1,f(4)=3﹣ =2,
∴f(x)在[2,4]上的值域是[1,2],f(x)是 型函數(shù),
∴①錯(cuò)誤;
對于②,y=﹣ x2+x是3型函數(shù),即﹣ x2+x=3x,解得x=0,或x=﹣4,∴m=﹣4,n=0,
∴②正確;
對于③,f(x)=x3+2x2+x(x≤0)是k型函數(shù),則x3+2x2+x=kx有二不等負(fù)實(shí)數(shù)根,
即x2+2x+(1﹣k)=0有二不等負(fù)實(shí)數(shù)根,
∴ ,解得0<k<1,
∴③錯(cuò)誤;
對于④,y= (a≠0)是1型函數(shù),即(a2+a)x﹣1=a2x2 , ∴a2x2﹣(a2+a)x+1=0,
∴方程的兩根之差x1﹣x2= = =
= ≤ ,即n﹣m的最大值為 ,∴④正確.
綜上,正確的命題是②④.
故選:C.
根據(jù)題目中的新定義,結(jié)合函數(shù)與方程的知識(shí),逐一判定命題①②③④是否正確,從而確定正確的答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意實(shí)數(shù)x,cos2x+2ksinx﹣2k﹣2<0恒成立,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.k>﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)當(dāng)a=2,求函數(shù)f(x)的最大值和最小值;
(2)若函數(shù)f(x)在定義域內(nèi)是單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,是奇函數(shù)且在區(qū)間(0,1)內(nèi)單調(diào)遞減的函數(shù)是( )
A.y=log2x
B.y=x﹣
C.y=﹣x3
D.y=tanx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與.
(1)若曲線與曲線恰好相切于點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,甲所得為( )
A. 錢
B. 錢
C. 錢
D. 錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)求函數(shù)f(x)+g(x)的定義域;
(2)判斷f(x)+g(x)的奇偶性,并說明理由;
(3)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:f(x+1)= ,當(dāng)x∈(0,1]時(shí),f(x)=2x , 則f(log29)等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E是正方形ABCD所在平面外一點(diǎn),E在面ABCD上的正投影F恰在AC上,F(xiàn)G∥BC,AB=AE=2,∠EAB=60°,有以下四個(gè)命題:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作為鄰邊的平行四邊形面積是8;
(4)∠EAD=60°.
其中正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com