10.隨意安排甲、乙、丙3人在元旦假期3天中值班,每人值班1天,
(1)這3人的值班順序有多少種不同的安排方法?
(2)甲排在乙之前的概率是多少?
(3)乙不在第1天值班的概率是多少?

分析 (1)隨意安排三人,每人一天,排法為三人的全排列數(shù);
(2)利用古典概型的概率計(jì)算公式可得答案;
(3)根據(jù)排列組合公式計(jì)算即可.

解答 解:(1)由題意可知,這三人值班順序共有${A}_{3}^{3}$=6種;
(2)甲排在乙前面有①甲、乙、丙;②甲、丙、乙;③丙、甲、乙共3種,
故甲排在乙前面的概率為:$\frac{3}{6}$=$\frac{1}{2}$;
(3)乙不在第1天值班的方法有${{C}_{2}^{1}A}_{2}^{2}$=4種方法,
故乙不在第1天值班的概率是$\frac{4}{6}$=$\frac{2}{3}$.

點(diǎn)評 本題考查排列數(shù)的計(jì)算、古典概型的概率計(jì)算公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,ABCD是邊長為2的菱形,且∠DAB=60°,PC=4,PA=2,E是PA的中點(diǎn),平面PAC⊥平面ABCD.
(Ⅰ)求證:PC∥平面BDE;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知⊙A和⊙B的公共弦CD與AB相交于點(diǎn)E,CB與⊙A相切,⊙B半徑為2,AE=3.
(Ⅰ)求弦CD的長;
(Ⅱ)⊙B與線段AB相交于點(diǎn)F,延長CF與⊙A相交于點(diǎn)G,求CG的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,滿足2$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,若實(shí)數(shù)λ滿足$\overrightarrow{AB}$+$\overrightarrow{AC}$=λ$\overrightarrow{AP}$,則λ的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.雙曲線的漸近線方程為x±2y=0,焦距為10,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知兩個(gè)隨機(jī)變量X,Y滿足X+2Y=4,且X~N(1,22),則E(Y),D(Y)依次是(  )
A.$\frac{3}{2}$,2B.$\frac{1}{2}$,1C.$\frac{3}{2}$,1D.$\frac{1}{2}$,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,D為BC邊中點(diǎn),G為AD中點(diǎn),直線EF過G與邊AB、AC相交于E、F,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,則m+n的最小值為( 。
A.4B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從3件正品,2件次品中隨機(jī)抽取出兩件,則恰好是1件正品,1件次品的概率是( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E是BC的中點(diǎn),F(xiàn)是PA上的一個(gè)動(dòng)點(diǎn).
(1)求證:CF⊥BD;
(2)求二面角D-PE-A的大小的正弦值;
(3)若直線EF與平面CDE所成角的正切值為$\frac{1}{\sqrt{21}}$,求AF的值.

查看答案和解析>>

同步練習(xí)冊答案