分析 (Ⅰ)由已知條件求得n的值,利用二項展開式的通項公式,可得展開式中所有有理項和二項式系數(shù)最大的項.
(Ⅱ)對于${(3x-1)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,分別給x賦值,可得要求式子的值.
解答 解:(Ⅰ)∵二項式${(\sqrt{x}+\frac{2}{{\root{3}{x}}})^n}({n∈{N^*}})$的前三項的系數(shù)的和為129,
∴${C}_{n}^{0}$+${C}_{n}^{1}$•2+${C}_{n}^{2}$•22=129,求得n=8,故展開式的通項公式為Tr+1=${C}_{8}^{r}$•2r•${x}^{4-\frac{5r}{6}}$,
令4-$\frac{5r}{6}$為整數(shù),可得r=0,6,故此展開式中所有有理項為:T1=x4,T7=${C}_{8}^{6}$•x-1.
二項式系數(shù)最大的項為T5=${C}_{8}^{4}$•${x}^{\frac{2}{3}}$.
(Ⅱ)∵已知${(3x-1)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,
(1)在已知${(3x-1)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$中,令x=0,可得a0=-1.
(2)在已知${(3x-1)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$中,
令x=1可得a0+a1+a2+a3+…+a7 =27=128 ①,∴a1+a2+a3+…+a7 =27+1=129.
(3)在已知${(3x-1)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$中,令x=-1,可得a0-a1+a2-a3+…-a7 =-47 ②,
把①式減去②式,并除以2,可得 a1+a3+a5+a7 =$\frac{128{+4}^{7}}{2}$.
(4)把①式加上②式,并除以2,可得a0+a2+a4+a6=$\frac{128{-4}^{7}}{2}$.
(5)根據(jù)${(3x-1)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,可得|a0|+|a1|+|a2|+…+|a7|即為(3x+1)7的展開式中各項系數(shù)和,為47.
點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | mn=1 | B. | mn=-1 | C. | m+n=1 | D. | m+n=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 終邊在x軸負(fù)半軸上的角是零角 | |
B. | 三角形的內(nèi)角必是第一、二象限內(nèi)的角 | |
C. | 不相等的角的終邊一定不相同 | |
D. | 若β=α+k•360°(k∈Z),則α與β終邊相同 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{9}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6個 | B. | 5個 | C. | 4個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com