為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示:規(guī)定:當產(chǎn)品中此種元素含量大于18毫克時,認定該產(chǎn)品為優(yōu)等品.
(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大;
(2)從乙廠抽出上述10件產(chǎn)品中,隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及數(shù)學期望.
考點:離散型隨機變量的期望與方差,莖葉圖,離散型隨機變量及其分布列
專題:概率與統(tǒng)計
分析:(1)分別求出甲廠平均值和乙廠平均值,由此能比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大。
(2)由已知得ξ的取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及數(shù)學期望.
解答: 解:(1)甲廠平均值為
1
10
(9+18+15+16+19+13+23+20+25+21)=17.9.…(2分)
乙廠平均值為
1
10
(18+14+15+16+19+10+13+21+20+23)=16.9,…(4分)
所以甲廠平均值大于乙廠平均值.…(5分)
(2)由已知得ξ的取值為0,1,2,3.…(6分)
P(ξ=0)=
C
0
4
C
3
6
C
3
10
=
1
6
,
P(ξ=1)=
C
1
4
C
2
6
C
3
10
=
1
2
,
P(ξ=2)=
C
2
4
C
1
6
C
3
10
=
3
10
,
P(ξ=3)=
C
3
4
C
3
10
=
1
30
,…(10分)
所以ξ的分布列為
ξ    0      1     2     3
P
1
6
1
2
  
3
10
  
     
1
30
故E(ξ)=
1
6
+1×
1
2
+2×
3
10
+3×
1
30
=1.2.…(12分)
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,在歷年高考中都是必考題型之一.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
x
a(x+2)
,x=f(x)有唯一解,f(x0)=
1
1008
,f(xn-1)=xn,n=1,2,3,…,則x2015=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三邊分別是a,b,c,且滿足b2+c2=bc+a2
(1)求角A;
(2)若a=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+x2-3x,則其導函數(shù)f′(x)的圖象與x軸所圍成的封閉圖形的面積為( 。
A、ln2
B、
3
4
-ln2
C、
3
4
+ln2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某網(wǎng)店經(jīng)營的一紅消費品的進價為每件12元,周銷售量p(件)與銷售價格x(元)的關(guān)系,如圖中折線所示,每周各項開支合計為20元.
(1)寫出周銷售量p(件)與銷售價格x(元)元的函數(shù)關(guān)系式;
(2)寫出利潤周利潤y(元)與銷售價格x(元)的函數(shù)關(guān)系式;
(3)當該消費品銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(a)=(
cos
α
2
sin
α
2
-tan
α
2
)•
1-cos2α
2sinα

(Ⅰ)求f(
π
4
)的值;
(Ⅱ)若f(α)=
6
5
,α是第四象限角,求cos(α-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域:y=
x2-2x+2
2x-1
(x>
1
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式|x-1|+|x-2|≤a2+a+1的解集不為∅,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出下列函數(shù)的圖象.
(1)y=|x+1|+|x-2|
(2)y=x2-2|x|-3.

查看答案和解析>>

同步練習冊答案