已知f(a)=(
cos
α
2
sin
α
2
-tan
α
2
)•
1-cos2α
2sinα

(Ⅰ)求f(
π
4
)的值;
(Ⅱ)若f(α)=
6
5
,α是第四象限角,求cos(α-
π
3
)的值.
考點:三角函數(shù)中的恒等變換應(yīng)用,兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:(Ⅰ)由三角函數(shù)中的恒等變換應(yīng)用化簡可得f(a)=2cosα,代入即可得解.
(Ⅱ)由已知可得cosα=
3
5
,α是第四象限角,可求sinα,由兩角和與差的余弦函數(shù)公式即可求cos(α-
π
3
)的值.
解答: 解:(Ⅰ)∵f(a)=(
cos
α
2
sin
α
2
-tan
α
2
)•
1-cos2α
2sinα
=
1-tan2
α
2
tan
α
2
•sinα
=
2
tanα
sinα
=2cosα
∴f(
π
4
)=2cos
π
4
=
2
…6分
(Ⅱ)f(α)=
6
5
,可得cosα=
3
5
,α是第四象限角,所以sinα=-
4
5
,
cos(α-
π
3
)=
3
5
×
1
2
-
4
5
×
3
2
=
3-4
3
10
…12分
點評:本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,兩角和與差的余弦函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某次考試中,從甲乙兩個班各抽取10名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計分析,兩個班成績的莖葉圖如圖所示,成績不小于90分的為及格.
(1)用樣本估計總體,請根據(jù)莖葉圖對甲乙兩個班級的成績進行比較;
(2)求從甲班10名學(xué)生和乙班10名學(xué)生中各抽取一人,已知有人及格的條件下乙班同學(xué)不及格的概率;
(3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為2,PA是⊙O的切線,A為切點,且PA=2
2
,過點P的一條割線與⊙O交于B,C兩點,圓心O到割線的距離為
3
,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a1=7,a2為整數(shù),當且僅當n=4時,Sn取得最大值.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(9-an)•2n-1,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示:規(guī)定:當產(chǎn)品中此種元素含量大于18毫克時,認定該產(chǎn)品為優(yōu)等品.
(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大;
(2)從乙廠抽出上述10件產(chǎn)品中,隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對a,b∈R,記max{a,b}=
a,(a≥b)
b,(a<b)
,則函數(shù)f(x)=max{|x+1|,x2-2x+
9
4
}
( 。
A、有最大值
3
2
,無最小值
B、有最大值
1
2
,無最小值
C、有最小值
3
2
,無最大值
D、有最小值
1
2
,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx+c>0的解集為{x|-3<x<4},求不等式bx2+2ax-c-3b<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(3x-2x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從8名男學(xué)生、4名女學(xué)生中選出3人參加朗誦比賽,
(1)恰有2名女生的選法有多少種?
(2)至少有1名女生的選法有多少種?

查看答案和解析>>

同步練習(xí)冊答案