12.已知某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如表:
商店名稱ABCDE
銷售額x (千萬元)35679
利潤額y (百萬元)23345
(I)畫出散點(diǎn)圖;
(Ⅱ)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;
(Ⅲ)若該公司還有一個(gè)零售店某月銷售額為11千萬元,試估計(jì)它的利潤額是多少?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=200)

分析 (I)由表中數(shù)據(jù)繪制散點(diǎn)圖;
(Ⅱ)求得數(shù)據(jù)的樣本中心點(diǎn)($\overline{x}$,$\overline{y}$),由最小二乘法求得$\widehat$,代入$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,即可求得線性回歸方程;
(Ⅲ)將x=11代入線性回歸方程,即可求得某月銷售額為11千萬元,試估計(jì)它的利潤額.

解答 解:(I)畫出散點(diǎn)圖:

由已知數(shù)據(jù)可知:$\overline{x}$=$\frac{1}{5}$(3+5+6+7+9)=6,$\overline{y}$=$\frac{1}{5}$(2+3+3+4+5)=3.4,
∴$\widehat$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{x}_{i}^{2}-5{\overline{x}}^{2}}$=$\frac{112-5×6×3.4}{200-5×6×6}$=0.5,
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=3.4-0.5×6=0.4,
∴線性回歸方程為:$\widehat{y}$=0.5x+0.4,
(Ⅲ)當(dāng)x=11,代入線性回歸剛才可知$\widehat{y}$=5.9(千萬元),
某月銷售額為11千萬元,試估計(jì)它的利潤額是5.9千萬元.

點(diǎn)評 本題考查求線性回歸方程的方法及線性回歸方程的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若一個(gè)函數(shù)恰有兩個(gè)零點(diǎn),則稱這樣的函數(shù)為“雙胞胎”函數(shù),若函數(shù)f(x)=ax-lnx+$\frac{a-1}{x}$+3(a≤0)為“雙胞胎”函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(-1,+∞)B.(-∞,-1)C.(-1,0)D.(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,拋物線y=$\frac{1}{16}$x2+1與雙曲線C的漸近線相切,則雙曲線C的方程為$\frac{{x}^{2}}{4}$-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x+ax2+blnx在x=$\frac{3}{2}$處取得極大值為-$\frac{3}{4}$+3ln$\frac{3}{2}$.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某中學(xué)高三文科班學(xué)生共800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表從總抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你一次寫出最先檢查的3個(gè)人的編號;
(下面摘取了第7行到第9行)
84 42 17 53 31   57 24 55 06 88   77 04 74 47 67   21 76 33 50 25  83 92 12 06 76
63 01 63 78 59   16 95 56 67 19   98 10 50 71 75   12 86 73 58 07  44 39 52 38 79 
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個(gè)等級,橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率30%,求a,b的值.
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知AD是△ABC的角平分線,且AC=2,AB=4,cos∠BAC=$\frac{11}{16}$.
(1)求△ABC的面積;
 (2)求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=2ex+$\frac{1}{2}$ax2+ax+1有兩個(gè)極值,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-2]B.(-∞,-2)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.兒子的身高和父親的身高是(  )
A.確定性關(guān)系B.相關(guān)關(guān)系C.函數(shù)關(guān)系D.無任何關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在極坐標(biāo)系下,點(diǎn)M(2,$\frac{π}{3}$)到直線l:ρ(2cosθ+sinθ)=4的距離為$\frac{2\sqrt{5}-\sqrt{15}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案