11.設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f(1)=( 。
A.1B.3C.-3D.0

分析 由奇函數(shù)性質得當x>0時,f(x)=-2x2-x,由此能求出f(1).

解答 解:∵f(x)是定義在R上的奇函數(shù),
當x≤0時,f(x)=2x2-x,
∴當x>0時,f(x)=-2x2-x,
∴f(1)=-2-1=-3.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.拋物線y2=2px(p>0)的焦點為F,過焦點F且傾斜角為$\frac{π}{3}$的直線與拋物線相交于A,B兩點,若|AB|=8,則拋物線的方程為( 。
A.y2=4xB.y2=8xC.y2=3xD.y2=6x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=2,M為AD中點,求點A到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=$\sqrt{lg(5-{x}^{2})}$的定義域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.一緝私艇巡航至距領海邊界線l(一條南北方向的直線)3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊,已知緝私艇的最大航速是走私船最大航速的3倍,假設緝私艇和走私船均按直線方向以最大航速航行.
(1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時間在領海內攔截成功;(參考數(shù)據(jù):sin17°≈$\frac{\sqrt{3}}{6}$,$\sqrt{33}$≈5.7446)
(2)問:無論走私船沿何方向逃跑,緝私艇是否總能在領海內成功攔截?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=2$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$\overrightarrow b$在$\overrightarrow a$方向上的投影是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{cosB}$=-$\frac{3cosC}{c}$,則角A的最大值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示,給出下列條件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能夠單獨判定△ABC∽△ACD的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓E的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,左、右焦點分別是F1、F2,在橢圓E上有一動點A,過A、F1作一個平行四邊形,使頂點A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ) 判斷四邊形ABCD能否為菱形,并說明理由.
(Ⅱ) 當四邊形ABCD的面積取到最大值時,判斷四邊形ABCD的形狀,并求出其最大值.

查看答案和解析>>

同步練習冊答案