19.直線x-5y+10=0在x軸、y軸上的截距分別為(  )
A.-10和2B.2和-10C.1和-5D.-5和1

分析 分別令y=0,x=0,代入直線方程,可得直線x-5y+10=0在x軸、y軸上的截距.

解答 解:令y=0,則由x+10=0得:x=-10,即直線x-5y+10=0在x軸上的截距為-10,
令x=0,則由-5y+10=0得:y=2,即直線x-5y+10=0在y軸上的截距為2,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線的截距,正確理解直線在x軸、y軸上的截距的定義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(3,2m),若$\overrightarrow{a}$•$\overrightarrow$=7,則$\overrightarrow$-$\overrightarrow{a}$等于(  )
A.(4,4)B.(-2,0)C.(2,4)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的公比q>1.且2(an+an+2)=5an+1,n∈N*
(I)求q的值;
(Ⅱ)若a32=a10,求數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校-年級(jí)學(xué)生中進(jìn)行隨機(jī)抽職了100名學(xué)生進(jìn)行調(diào)查.調(diào)查結(jié)果如表所示:
 喜歡甜品不喜歡甜品合計(jì)
南方學(xué)生601070
北方學(xué)生201030
合計(jì)8020100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)將上述調(diào)查所得到學(xué)生喜歡甜品的頻率視為概率.現(xiàn)在從該大學(xué)一年級(jí)學(xué)生中,采用隨機(jī)抽樣的方法抽職1名學(xué)生,抽職5次,記被抽取的5名學(xué)生中的“喜歡甜品人數(shù)”為X.若每次抽職結(jié)果是相互獨(dú)立的,求期望E(X)和方差D(X).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$,
P(K2≥K)
 
0.100
 
0.050
 
0.010
 
K2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸正半軸上,且過點(diǎn)P(2,2),過F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn).
(1)求拋物線的方程;
(2)設(shè)直線l是拋物線的準(zhǔn)線,求證:以AB為直徑的圓與準(zhǔn)線l相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.平行于x軸,且過點(diǎn)(3,2)的直線的方程為(  )
A.x=3B.y=2C.y=$\frac{3}{2}$xD.y=$\frac{2}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),則sin($\frac{π}{3}$-α)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(2,x),$\overrightarrow$=(1,3),若$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則x的取值范圍是{x|x>-$\frac{2}{3}$且x≠6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn)為F,點(diǎn)E(0,1),點(diǎn)P(x,y)是雙曲線C的漸近線上一點(diǎn),O為原點(diǎn),且$\overrightarrow{OP}$=λ$\overrightarrow{OF}$+$\overrightarrow{OE}$,則λ=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案