(本小題滿分12分)
已知函數(shù)f(x)=x-ln(x+a).(a是常數(shù))
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II) 當(dāng)在x=1處取得極值時(shí),若關(guān)于x的方程f(x)+2x=x2+b在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(III)求證:當(dāng)時(shí)


(I) 函數(shù)的減區(qū)間為,增區(qū)間為
(II)
(III)證明略

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)對任意都有且x>0時(shí),<0, .(1)求在區(qū)間[-3,3]上的最大和最小值,(2)解關(guān)于x的不等式,(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)的圖像過原點(diǎn),,的導(dǎo)函數(shù)為,且,
(1)求函數(shù),的解析式;
(2)求的極小值;
(3)是否存在實(shí)常數(shù),使得若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知二次函數(shù)的圖像過點(diǎn),且有唯一的零點(diǎn).
(Ⅰ)求的表達(dá)式;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題滿分13分)
已知函數(shù)處取得極值
(1)求b與a的關(guān)系;
(2)設(shè)函數(shù),如果在區(qū)間(0,1)上存在極小值,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
2010年推出一種新型家用轎車,購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi).養(yǎng)路費(fèi)及汽油費(fèi)共0.7萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬元.  
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用.保險(xiǎn)費(fèi).養(yǎng)路費(fèi).汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分,每小題8分)
求下列函數(shù)的值域:(1) ;(2) ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
把下列各式分解因式
(1)         (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
小劉家要建造一個(gè)長方形無蓋蓄水池,其容積為48,深為3.如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊答案