9.直線l:y=-3x+b與圓C:(x-1)2+y2=1相交,則實(shí)數(shù)b的取值范圍是(-2,8).

分析 求出圓心坐標(biāo)與半徑,利用直線和圓相交的條件建立不等式關(guān)系進(jìn)行求解即可.

解答 解:圓的標(biāo)準(zhǔn)方程為C:(x-1)2+y2=1,則圓心坐標(biāo)為(1,0),半徑r=1,
∵直線l:y=-3x+b與圓C:(x-1)2+y2=1相交,
∴圓心到直線的距離d=$\frac{|-3+b|}{\sqrt{9+1}}$<1,
即|b-3|<5,
則-5<b-3<5,
即-2<b<8,
故答案為:(-2,8).

點(diǎn)評(píng) 本題主要考查直線與圓的位置關(guān)系的應(yīng)用,利用點(diǎn)到直線的距離與半徑之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(3x-1)7=a0+a1x+a2x2+…+a7x7,則|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|=47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+3x.
(1)①求證:函數(shù)f(x)在區(qū)間(-1,1]上是單調(diào)增函數(shù);
②當(dāng)a在何范圍內(nèi)取值時(shí),關(guān)于x的方程f(x)=a在x∈(-1,1]上有解?
(2)用二分法求方程f(x)=1在區(qū)間(-1,1)上的近似解.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知當(dāng)x∈(-$\frac{π}{6}$,π)時(shí),不等式cos2x-2asinx+6a-1>0恒成立,則實(shí)數(shù)a的取值范圍是a>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$
(1)求sin∠C的值;
(2)若△ABD的面積為7,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{3{x}^{2}+ax+26}{x+1}$,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為( 。
A.[-15,+∞)B.(-∞,2-12$\sqrt{2}$]C.(-∞,-16]D.(-∞,-15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,有一塊半徑為R的半圓形鋼板,計(jì)劃將其剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.
(1)試將該梯形的周長y表示成腰長x的函數(shù);
(2)腰長為多少時(shí),該梯形的周長最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了了解汽車在某一路段上的速度,交警對(duì)這段路上連續(xù)駛過的50輛汽車的速度(單位:km/h)進(jìn)行了統(tǒng)計(jì),得到的數(shù)據(jù)如下表所示:
速度區(qū)間[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)
車輛數(shù)1410151262
(1)試估計(jì)這段路上汽車行駛的平均速度;
(2)試估計(jì)在這段路上,汽車行駛速度的標(biāo)準(zhǔn)差.(注:為了計(jì)算方便,速度取每個(gè)區(qū)間的中點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC中,a+c=2b,3a+b=2c,求證:sinA:sinB:sinc=3:5:7.

查看答案和解析>>

同步練習(xí)冊答案