【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為。在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為。
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)P坐標(biāo)為,圓與直線交于兩點(diǎn),求的值。
【答案】(1) (2)
【解答】解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0
又由得 ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;
(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,
得(3﹣t)2+(t)2=5,即t2﹣3t+4=0
設(shè)t1,t2是上述方程的兩實(shí)數(shù)根,
所以t1+t2=3
又直線l過點(diǎn)P,A、B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,
所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.
【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標(biāo)方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達(dá)定理可得結(jié)果
試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0
又由得 ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;
(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,
得(3﹣t)2+(t)2=5,即t2﹣3t+4=0
設(shè)t1,t2是上述方程的兩實(shí)數(shù)根,
所以t1+t2=3
又直線l過點(diǎn)P,A、B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,
所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù), 的值分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段, 為垂足,點(diǎn)在線段上,且,點(diǎn)在圓上運(yùn)動(dòng)。
(1)求點(diǎn)的軌跡方程;
(2)過定點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),在軸上是否存在點(diǎn),使為常數(shù),若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點(diǎn)的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機(jī)在10個(gè)賣場的銷售量(單位:臺),并根據(jù)這10個(gè)賣場的銷售情況,得到如圖所示的莖葉圖.
為了鼓勵(lì)賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的“星級賣場”.
(1)當(dāng)時(shí),記甲型號電視機(jī)的“星級賣場”數(shù)量為,乙型號電視機(jī)的“星級賣場”數(shù)量為,比較的大小關(guān)系;
(2)在這10個(gè)賣場中,隨機(jī)選取2個(gè)賣場,記為其中甲型號電視機(jī)的“星級賣場”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;
(3)若,記乙型號電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷為何值時(shí),達(dá)到最小值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn) 處的切線平行直線,且點(diǎn)在第三象限.
(1)求的坐標(biāo);
(2)若直線, 且也過切點(diǎn) ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三(1)班班主任李老師為了了解本班學(xué)生喜愛中國古典文學(xué)是否與性別有關(guān),對全班50人進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡中國古典文學(xué) | 不喜歡中國古典文學(xué) | 合計(jì) | |
女生 | 5 | ||
男生 | 10 | ||
合計(jì) | 50 |
已知從全班50人中隨機(jī)抽取1人,抽到喜歡中國古典文學(xué)的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有的把握認(rèn)為喜歡中國古典文學(xué)與性別有關(guān)?請說明理由;
(3)已知在喜歡中國古典文學(xué)的10位男生中,,,還喜歡數(shù)學(xué),,還喜歡繪畫,,還喜歡體育.現(xiàn)從喜歡數(shù)學(xué)、繪畫和體育的男生中各選出1名進(jìn)行其他方面的調(diào)查,求和不全被選中的概率.
參考公式及數(shù)據(jù):,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=(n∈N+),
(1)計(jì)算a2、a3、a4并由此猜想通項(xiàng)公式an;
(2)證明(1)中的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com