【題目】在數(shù)列{an}中,a1=2,an+1=(n∈N+),

(1)計(jì)算a2、a3、a4并由此猜想通項(xiàng)公式an;

(2)證明(1)中的猜想.

【答案】(1)(2)見解析

【解析】試題分析(1)根據(jù)遞推關(guān)系式依次求a2、a3、a4,根據(jù)分子分母之間關(guān)系猜想通項(xiàng)公式an(2)利用數(shù)學(xué)歸納法證明,先證起始項(xiàng),再利用an+1=及歸納假設(shè)證n=k+1情況

試題解析:(1)在數(shù)列{an}中,∵a1=2,an+1=(n∈N*)

∴a1=2=,a2==,a3==,a4==,

∴可以猜想這個(gè)數(shù)列的通項(xiàng)公式是an=

(2)方法一:下面利用數(shù)學(xué)歸納法證明:

①當(dāng)n=1時(shí),成立;

②假設(shè)當(dāng)n=k時(shí),ak=

則當(dāng)n=k+1(k∈N*)時(shí),ak+1===,

因此當(dāng)n=k+1時(shí),命題成立.

綜上①②可知:n∈N*,an=都成立,

方法二:∵an+1=,

==1+,∴=1,∵a1=2,∴=,

∴{}是以為首項(xiàng),以1為公差的等差數(shù)列,∴=+(n﹣1)=,∴an=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為。在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

(2)若點(diǎn)P坐標(biāo)為,圓與直線交于兩點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市化工廠三個(gè)車間共有工人1 000名,各車間男、女工人數(shù)如下表:

第一車間

第二車間

第三車間

女工

173

100

y

男工

177

x

z

已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的可能性是0. 15.

(1)求x的值;

(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:

算得,K2≈7.8.見附表:參照附表,得到的正確結(jié)論是( 。

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

C. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,:

(1)1個(gè)孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.(注: 為自然對(duì)數(shù)的底數(shù))

(1)求的值;

(2)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(3)求證:當(dāng)時(shí), 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,過、三點(diǎn)的圓的圓心坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線為常數(shù), )與橢圓交于不同的兩點(diǎn)

(。┊(dāng)直線,且時(shí),求直線的方程;

(ⅱ)當(dāng)坐標(biāo)原點(diǎn)到直線的距離為,且面積為時(shí),求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察圖中各正方形圖案,每條邊上有an個(gè)圓點(diǎn),第an個(gè)圖案中圓點(diǎn)的個(gè)數(shù)是an,按此規(guī)律推斷出所有圓點(diǎn)總和Snn的關(guān)系式為( 。

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案