2.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑,半徑長度為2,則該幾何體的表面積是( 。
A.17πB.18πC.20πD.28π

分析 由三視圖畫出該幾何體的直觀圖,分析可得該幾何體是一個球被切掉左上角的八分之一,它的表面積是八分之七的球面面積和三個扇形面積之和,進(jìn)而得到答案.

解答 解:由三視圖知,該幾何體的直觀圖如圖所示:

該幾何體是一個球被切掉左上角的八分之一,
即該幾何體是八分之七個球,
球半徑R=2,
所以它的表面積是八分之七的球面面積和三個扇形面積之和,
即$\frac{7}{8}$×4π×22+$\frac{3}{4}$×π×22=17π,
故選A.

點(diǎn)評 本題考查的知識點(diǎn)是球的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),l為其準(zhǔn)線,過F作一條直線交拋物線于A,B兩點(diǎn),A′,B′分別為A,B在l上的射線,M為A′B′的中點(diǎn),給出下列命題:
①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F與AM的交點(diǎn)在y軸上;
⑤AB′與A′B交于原點(diǎn).
其中真命題的是①②③④⑤.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則ω,φ的值分別是(  )
A.2,-$\frac{π}{6}$B.2,-$\frac{π}{3}$C.4,-$\frac{π}{3}$D.4,-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow a=(x,y)$(x,y∈R),$\overrightarrow b=(1,2)$,若x2+y2=1,則$|\overrightarrow a-\overrightarrow b|$的最大值為$\sqrt{5}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)y=f(x)在區(qū)間I上是增函數(shù),且函數(shù)$y=\frac{f(x)}{x}$在區(qū)間I上是減函數(shù),則稱函數(shù)f(x)是區(qū)間I上的“H函數(shù)”.對于命題:①函數(shù)$f(x)=-x+2\sqrt{x}$是(0,1)上的“H函數(shù)”;②函數(shù)$g(x)=\frac{2x}{{1-{x^2}}}$是(0,1)上的“H函數(shù)”.下列判斷正確的是( 。
A.①和②均為真命題B.①為真命題,②為假命題
C.①為假命題,②為真命題D.①和②均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義:稱$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個正數(shù)p1,p2,…,pn的“均倒數(shù)”,若數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{2n-1}$,則數(shù)列{an}的通項(xiàng)公式為4n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)是定義在R上的函數(shù),且滿足f(x-1)=f(x+1)=f(1-x),當(dāng)x∈[2,3]時,f(x)=-2(x-3)2+4,求當(dāng)x∈[1,2]時,f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線x2=$\frac{1}{4}$y上的一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M到x軸的距離是( 。
A.$\frac{17}{16}$B.$\frac{15}{16}$C.1D.$\frac{7}{8}$

查看答案和解析>>

同步練習(xí)冊答案