20.平行向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(sinθ,cosθ),且$\overrightarrow{a}∥\overrightarrow$,則cos2θ=$\frac{7}{25}$.

分析 根據(jù)平面向量共線定理的坐標(biāo)表示,列出方程求出tanθ的值,再利用倍角關(guān)系與同角的三角函數(shù)關(guān)系,即可求出cos2θ的值.

解答 解:∵向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(sinθ,cosθ),且$\overrightarrow{a}∥\overrightarrow$,
∴3cosθ-4sinθ=0,
∴tanθ=$\frac{3}{4}$;
∴cos2θ=cos2θ-sin2θ
=$\frac{{cos}^{2}θ{-sin}^{2}θ}{{sin}^{2}θ{+cos}^{2}θ}$
=$\frac{1{-tan}^{2}θ}{1{+tan}^{2}θ}$
=$\frac{1{-(\frac{3}{4})}^{2}}{1{+(\frac{3}{4})}^{2}}$
=$\frac{7}{25}$.
故答案為:$\frac{7}{25}$.

點(diǎn)評(píng) 本題考查了平面向量共線定理的坐標(biāo)表示以及倍角關(guān)系與同角的三角函數(shù)關(guān)系的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2=12,a3•a5=4,則下列說(shuō)法正確的是( 。
A.{an}是單調(diào)遞減數(shù)列B.{Sn}是單調(diào)遞減數(shù)列
C.{a2n}是單調(diào)遞減數(shù)列D.{S2n}是單調(diào)遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知實(shí)數(shù)x,y滿足(x-2)2+y2=9,求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{3x-y≥0}\\{y≥0}\end{array}\right.$,則|3x-4y-10|的最大值為$\frac{49}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.平面直角坐標(biāo)系xOy中,向量$\overrightarrow{α}$=(2,1),$\overrightarrow{β}$=(3,λ)(λ>0),若(2$\overrightarrow{α}-\overrightarrow{β}$)$⊥\overrightarrow{β}$,記<$\overrightarrow{α},\overrightarrow{β}$>=θ,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.畫(huà)出下列各不等式組所表示的平面區(qū)域.
(1)$\left\{\begin{array}{l}{3x-y+6>0}\\{2x+3y-1≥0}\\{2x-4<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{1<x+2y≤4}\\{-2≤2x-y≤-1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)y=Asin(ωx+φ)(ω>0,A>0,φ為銳角),在同一周期內(nèi),當(dāng)x=$\frac{π}{12}$時(shí),取得最大值y=2,當(dāng)x=$\frac{7π}{12}$時(shí),取得最小值y=-2,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知點(diǎn)A(3,-5),B(-2,2),則線段AB間的距離是$\sqrt{74}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且b2+c2=a2+bc
(1)求A;
(2)若$a=\sqrt{3}$,b+c=3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案