9.已知向量$\overrightarrowa=({2,1}),\overrightarrowb=({3,λ})$,若$\overrightarrowa⊥\overrightarrowb$,則λ=-6.

分析 根據(jù)向量垂直的條件得到$\overrightarrow{a}•\overrightarrow$=2×3+1×λ=0,解得即可.

解答 解:∵向量$\overrightarrowa=({2,1}),\overrightarrowb=({3,λ})$,$\overrightarrowa⊥\overrightarrowb$,
∴$\overrightarrow{a}•\overrightarrow$=2×3+1×λ=0,
∴λ=-6,
故答案為:-6.

點(diǎn)評(píng) 本題考查了向量垂直的條件和向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.石嘴山市在每年的春節(jié)后,市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹活動(dòng)中去.林管部門在植樹前,為保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè).現(xiàn)從甲乙兩種樹苗中各抽測(cè)了10株樹苗的高度,量出的高度如下(單位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根據(jù)抽測(cè)結(jié)果,完成答題卷中的莖葉圖(圖1),并根據(jù)你填寫的莖葉圖,對(duì)甲、乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹苗高度平均值為$\overline x$,將這10株樹苗的高度依次輸入按程序框圖(圖2)進(jìn)行的運(yùn)算,問輸出的S大小為多少?并說(shuō)明S的統(tǒng)計(jì)學(xué)意義.
(3)現(xiàn)從10株甲種樹苗中隨機(jī)抽取兩株高度不低于25cm的樹苗,求高度為33cm的樹苗被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若x,y滿足約束條件$\left\{{\begin{array}{l}{y-x≤1}\\{x+y≤3}\\{y≥1}\end{array}}\right.$,則$z=\frac{y}{x+2}$的最大值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知扇形的圓心角為2弧度,面積為4,則該扇形的弧長(zhǎng)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{11}{2}$上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{3}{(2{a}_{n}-11)(2{a}_{n+1}-11)}$,求數(shù)列{bn}的前n項(xiàng)和為Tn,并求使不等式Tn>$\frac{k}{20}$對(duì)一切n∈N*都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:?x∈R,x2+1>0,命題q:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$.在命題①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(Ⅰ)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為y=-1,求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)已知雙曲線的一條漸近線方程是x+2y=0,并經(jīng)過點(diǎn)(2,2),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知α,β都是銳角,sinα=$\frac{3}{5}$,tan(α-β)=-$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在等差數(shù)列{an}中,a1=2,d=-1,求S8

查看答案和解析>>

同步練習(xí)冊(cè)答案