12.已知|${\overrightarrow a}$|=1,|${\overrightarrow b$|=2$\sqrt{3}$,$\overrightarrow a$•(${\overrightarrow b$-$\overrightarrow a}$)=-4,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 求出$\overrightarrow{a}•\overrightarrow$,代入夾角公式計(jì)算.

解答 解:∵$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=$\overrightarrow{a}•\overrightarrow$-${\overrightarrow{a}}^{2}$=-4,∴$\overrightarrow{a}•\overrightarrow$=${\overrightarrow{a}}^{2}$-4=-3.
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{-3}{2\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$.
∴<$\overrightarrow{a},\overrightarrow$>=$\frac{5π}{6}$.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,夾角公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的極坐標(biāo)方程是ρ2-4ρcos(θ-$\frac{π}{3}$)-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=3$\sqrt{2}$,求直線的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(B)=1.
(Ⅰ)求B;
(Ⅱ)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中,正確的是( 。
A.命題“若x≠2或y≠7,則x+y≠9”的逆命題為真命題
B.命題“若x2=4,則x=2”的否命題是“若x2=4,則x≠2”
C.命題“若x2<1,則-1<x<1”的逆否命題是“若x<-1或x>1,則x2>1”
D.若命題p:?x∈R,x2-x+1>0,q:?x0∈(0,+∞),sinx0>1,則(¬p)∨q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$與$\overrightarrow$的夾角為$\frac{π}{3}$,$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,則|$\overrightarrow{a}$-2$\overrightarrow$|=( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知p:(x-m+1)(x-m-1)<0;q:$\frac{1}{2}$<x<$\frac{2}{3}$,若p是q的必要不充分條件,則實(shí)數(shù)m的取值范圍是$[-\frac{1}{3},\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A={x|x2-3x-4≤0},B={x|x2-2mx+m2-9≤0},C={y|y=ax+b,a>0,且a≠1,x∈R}.
(1)若A∩B=[0,4],求m的值;
(2)若A∩C只有一個(gè)子集,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)y=f(x),當(dāng)x=2時(shí),函數(shù)f(x)取最小值-1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在區(qū)間(1,4)上無最小值,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=|lgx|-sinx的零點(diǎn)個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案