如圖,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:AC⊥平面BB1C1C;
(2)在A1B1上是否存一點(diǎn)P,使得DP與平面BCB1與平面ACB1都平行?證明你的結(jié)論.
證明:(1)直棱柱ABCD-A1B1C1D1中,BB1⊥平面ABCD,∴BB1⊥AC.(2分)
又∵∠BAD=∠ADC=90°,AB=2AD=2CD=2,
AC=
2
,∠CAB=45°,∴BC=
2
,∴BC⊥AC.(4分)
又BB1∩BC=B,BB1,BC?平面BB1C1C,∴AC⊥平面BB1C1C.(7分)

(2)存在點(diǎn)P,P為A1B1的中點(diǎn).(8分)
證明:由P為A1B1的中點(diǎn),有PB1‖AB,且PB1=
1
2
AB.(10分)
又∵DC‖AB,DC=
1
2
AB,∴DCPB1,且DC=PB1
∴DCB1P為平行四邊形,從而CB1DP.
又CB1?面ACB1,DP?面ACB1,∴DP‖面ACB1.(12分)
同理,DP‖面BCB1.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)證明:A1C⊥AB;
(2)設(shè)BC=AC=2,求三棱錐C-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P為平行四邊形ABCD外一點(diǎn),且PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面是直角梯形,ABDC,∠DAB=90°,
PA⊥底面ABCD,PA=AD=DC=
1
2
AB=1,M是PB的中點(diǎn).
(1)求證:CM平面PAD;
(2)求證:BC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,點(diǎn)E滿足
PE
=
1
3
PD

(1)求證:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在長方體AC′中,AB=AC=a,BB′=b(b>a),連接BC′,過點(diǎn)B′作B′E⊥BC′交CC′于E.
(1)求證:AC′⊥平面EB′D′;
(2)求三棱錐C′-B′D′E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,AC⊥BC,D是棱AA1的中點(diǎn),AA1=2AC=2BC=2a(a>0).
(1)證明:C1D⊥平面BDC;
(2)求三棱錐C-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A-BCDE是一個四棱錐,AB⊥平面BCDE,且四邊形BCDE為矩形,則圖中互相垂直的平面共有( 。
A.4組B.5組C.6組D.7組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A'-BCD,使平面A'BD⊥平面BCD,則下列結(jié)論正確的是( 。
A.A'C⊥BD
B.∠BA'C=90°
C.△A'DC是正三角形
D.四面體A'-BCD的體積為
1
3

查看答案和解析>>

同步練習(xí)冊答案