分析 (1)運用數(shù)列極限公式$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=0;(2)運用等比數(shù)列的求和公式求得Sn,再取極限,即可得到所求值.
解答 解:由an=$\left\{\begin{array}{l}{\frac{1}{n(n+1)},1≤n≤3}\\{\frac{1}{{2}^{n-1}}.n≥4}\end{array}\right.$,
(1)$\underset{lim}{n→∞}{a}_{n}$=$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=0;
(2)Sn為前n項的和,
即有Sn=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n-1}}$
=$\frac{3}{4}$+$\frac{\frac{1}{8}(1-\frac{1}{{2}^{n-3}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
即有$\underset{lim}{n→∞}{S}_{n}$=$\underset{lim}{n→∞}$(1-$\frac{1}{{2}^{n-1}}$)
=1-$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=1-0=1.
點評 本題考查等比數(shù)列的通項和求和公式的運用,考查數(shù)列極限的求法,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{4}{3}$$\sqrt{2}$ | D. | $\frac{4}{3}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{16}$ | B. | $\frac{3}{4}$ | C. | $\frac{3\sqrt{3}}{16}$ | D. | $\frac{3}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com