如圖,斜三棱柱中,側(cè)面底面ABC,底面ABC是邊長(zhǎng)為2的等邊三角形,側(cè)面是菱形,,E、F分別是、AB的中點(diǎn).
求證:(1);
(2)求三棱錐的體積.
(1)證明詳見(jiàn)解析;(2)
解析試題分析:(1)作,O為垂足,而,可證O為AC的中點(diǎn),得,可證四邊形為平行四邊形,即,由已知可得,所以底面ABC.即底面ABC.
(2)由于底面ABC是等邊三角形,且F是AB的中點(diǎn),可知F到平面的距離等于B點(diǎn)到平面距離BO的一半,而B(niǎo)O=,又三棱錐的體積等于三棱錐F-EA1C的體積,求出三角形EA1C的面積,最后根據(jù)棱錐的體積公式求解即可.
試題解析:證明:(1) 在平面內(nèi),作,O為垂足.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/2/l3uyw.png" style="vertical-align:middle;" />,所以,即O為AC的中點(diǎn),所以. 3分
因而.因?yàn)閭?cè)面⊥底面ABC,交線為AC,,所以底面ABC.
所以底面ABC. 6分
(2)F到平面的距離等于B點(diǎn)到平面距離BO的一半,而B(niǎo)O=. 8分
所以. 12分
考點(diǎn):平面與平面垂直的性質(zhì)、直線與平面垂直的判定以及棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,AB=2BF=4,C,E分別是AB,AF的中點(diǎn)(如下左圖).將此三角形沿CE對(duì)折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點(diǎn).
(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面ABF;
(3)求三棱錐C-AEF的體積,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在底面是正方形的四棱錐中,面,交于點(diǎn),是中點(diǎn),為上一動(dòng)點(diǎn).
(1)求證:;
(1)確定點(diǎn)在線段上的位置,使//平面,并說(shuō)明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某個(gè)實(shí)心零部件的形狀是如下圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等的等腰梯形的四棱臺(tái),上部是一個(gè)底面與四棱臺(tái)的上底面重合,側(cè)面是全等的矩形的四棱柱.
(1)證明:直線平面;
(2)現(xiàn)需要對(duì)該零部件表面進(jìn)行防腐處理.已知,,,(單位:),每平方厘米的加工處理費(fèi)為元,需加工處理費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED是邊長(zhǎng)為2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求幾何體ABCDFE的體積;
(Ⅱ)證明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)三棱柱的底面是邊長(zhǎng)3的正三角形,側(cè)棱垂直于底面,它的三視圖如圖所示,.
(1)請(qǐng)畫(huà)出它的直觀圖;(2)求這個(gè)三棱柱的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,斜三棱柱ABC-A'B'C'中,底面是邊長(zhǎng)為a的正三角形,側(cè)棱長(zhǎng)為b,側(cè)棱AA'與底面相鄰兩邊AB,AC都成45°角.
(Ⅰ)求此斜三棱柱的表面積.
(Ⅱ)求三棱錐B'-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體中,,點(diǎn)E是AB的中點(diǎn).
(1)求三棱錐的體積;
(2)證明: ;
(3)求二面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com