分析 (1)連結(jié)ED交AC于O,連結(jié)OF,證明FO∥B1E,然后證明B1E∥面ACF.
(2)取AE的中點(diǎn)M,連結(jié)B1M,說(shuō)明△ABE為等邊三角形,說(shuō)明B1M⊥面AECD,然后求解幾何體的體積.
解答 解:(1)證明:連結(jié)ED交AC于O,連結(jié)OF,因?yàn)锳ECD為菱形,OE=OD,∴FO∥B1E,∴B1E∥面ACF.
.
(2)取AE的中點(diǎn)M,連結(jié)B1M,因?yàn)?BA=AD=DC=\frac{1}{2}BC=a,△ABE$為等邊三角形,則${B_1}M=\frac{{\sqrt{3}}}{2}a$,又因?yàn)槊鍮1AE⊥面AECD,所以B1M⊥面AECD,所以$V=\frac{1}{3}×\frac{{\sqrt{3}}}{2}a×a×a×sin\frac{π}{3}=\frac{a^2}{4}$.
點(diǎn)評(píng) 本題考查直線與平面平行的判定定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0≤x<5} | B. | {0} | C. | {x|x<5} | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | 3-2$\sqrt{10}$ | C. | 3-4$\sqrt{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4$\sqrt{3}$π | C. | 12π | D. | 48π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com