已知:平面α,β,γ,α∥β,α∩γ=a,β∩γ=b求證:a∥b.
分析:首先根據(jù)α∩γ=a,β∩γ=b,得到直線a、b均在平面γ內(nèi),因此直線a、b是公面的直線,然后再根據(jù)α∩γ=a,β∩γ=b,說(shuō)明直線a、b分別在平行平面α、β內(nèi),說(shuō)明直線a、b沒(méi)有公共點(diǎn),因此可以證得直線a、b互相平行.
解答:證明:∵α∩γ=a,β∩γ=b,
∴a?α,b?β,a?γ,b?γ,
∵a,b都在平面γ內(nèi),
∴a與b是共面的直線,
又∵a?α,b?β,α∥β,
∴a,b沒(méi)有公共點(diǎn),
∴直線a、b是同一平面內(nèi)沒(méi)有公共點(diǎn)的直線,
∴a∥b
點(diǎn)評(píng):本題從空間的兩條直線位置關(guān)系和平面與平面平行的定義出發(fā),證明了平面與平面平行的性質(zhì)定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知PO⊥平面ABCD,點(diǎn)O在AB上,EA∥PO,四邊形ABCD是直角梯形,AB∥DC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
12
CD

(Ⅰ)求證:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大小;
(Ⅲ)在線段PE上是否存在一點(diǎn)M,使DM∥平面PBC,若存在求出點(diǎn)M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系xOy中,△AOB三個(gè)頂點(diǎn)的直角坐標(biāo)分別為A(4,3),O(0,0),B(b,0).
(1)若b=5,求cos2A的值;
(2)若△AOB為銳角三角形,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊一模)如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求直線BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,右頂點(diǎn)為D(2,0),設(shè)點(diǎn)A(1,
1
2
)

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過(guò)原點(diǎn)O并且交橢圓于點(diǎn)B、C,使得△ABC面積為1?如果存在,寫(xiě)出l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1992•云南)已知:平面α和不在這個(gè)平面內(nèi)的直線a都垂直于平面β.求證:a∥α.

查看答案和解析>>

同步練習(xí)冊(cè)答案