17.冪函數(shù)y=f(x)的圖象過點(diǎn)(2,$\frac{\sqrt{2}}{2}$),則f(4)=( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

分析 設(shè)冪函數(shù)y=f(x)=xα,根據(jù)函數(shù)圖象過點(diǎn)(2,$\frac{\sqrt{2}}{2}$)求出α的值,再寫出f(x),計算f(4)的值.

解答 解:設(shè)冪函數(shù)y=f(x)=xα
函數(shù)圖象過點(diǎn)(2,$\frac{\sqrt{2}}{2}$),
∴2α=$\frac{\sqrt{2}}{2}$,
解得α=-$\frac{1}{2}$,
∴f(x)=${x}^{-\frac{1}{2}}$;
∴f(4)=${4}^{-\frac{1}{2}}$=$\frac{1}{2}$.
故選:C.

點(diǎn)評 本題考查了冪函數(shù)的定義與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)G是一個非空集合,*是定義在G上的一個運(yùn)算.如果同時滿足下述四個條件:
(。⿲τ?a,b∈G,都有a*b∈G;
(ⅱ)對于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(iii)對于?a∈G,?e∈G,使得a*e=e*a=a;
(iv)對于?a∈G,?a'∈G,使得a*a′=a′*a=e(注:“e”同(iii)中的“e”).
則稱G關(guān)于運(yùn)算*構(gòu)成一個群.現(xiàn)給出下列集合和運(yùn)算:
①G是整數(shù)集合,*為加法;②G是奇數(shù)集合,*為乘法;③G是平面向量集合,*為數(shù)量積運(yùn)算;④G是非零復(fù)數(shù)集合,*為乘法.其中G關(guān)于運(yùn)算*構(gòu)成群的序號是①④(將你認(rèn)為正確的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知|${\overrightarrow a}$|=$\sqrt{5}$,$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,則$\overrightarrow a$的坐標(biāo)為( 。
A.(-2,-1)或(2,1)B.(-6,3)C.(1,2)D.(2,-1)或(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)M在曲線y=ln(x-1)上,點(diǎn)N在曲線y=$\frac{x-2}{x-1}$(x>1)上,點(diǎn)P在直線y=x上,則|PM|+|PN|的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)向量$\overrightarrow{a}$=(4cosα,sinα),$\overrightarrow$=(sinβ,4cosβ),$\overrightarrow{c}$=(cosβ,-4sinβ)
(1)若$\overrightarrow{a}$與$\overrightarrow$-2$\overrightarrow{c}$垂直,求tan(α+β)的值;
(2)若β∈(-$\frac{π}{12},\frac{5π}{12}$],求|$\overrightarrow+\overrightarrow{c}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)全集為U=R,集合A={x|(x+3)(4-x)≤0},B={x|log2(x+2)<3}.
(1)求A∩∁UB;
(2)已知C={x|2a<x<a+1},若C⊆A∪B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖是我國南宋時期的數(shù)學(xué)家秦九韶提出的一種多項式f(x)=anxn+an-1xn-1+…+a1x+a0的求值問題的算法.現(xiàn)按照這個程序執(zhí)行函數(shù)f (x)=3x4-2x3-6x-17的計算,若輸入的值x0=2,則輸出的v的值是(  )
A.0B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,{Sn-(n+1)2an}為常數(shù)列,則an=$\frac{6}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)m∈R,復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù).
(1)求m的值;
(2)若-2+mi是方程x2+px+q=0的一個根,求實數(shù)p,q的值.

查看答案和解析>>

同步練習(xí)冊答案