已知數(shù)列{an}中,a1=2,其前n項(xiàng)和Sn滿足Sn+1-Sn=2n+1(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式an以及前n和Sn;
(2)令bn=2log2an+1.求數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用Sn+1-Sn=2n+1求數(shù)列{an}的通項(xiàng)公式an,利用等比數(shù)列的前n項(xiàng)和公式求前n和Sn
(2)利用裂項(xiàng)法,求數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn
解答: 解:(1)∵Sn+1-Sn=2n+1
∴an+1=2n+1,
∴an=2n
∴Sn=
2(1-2n)
1-2
=2n+1-2;
(2)bn=2log2an+1=2n+1,
1
bnbn+1
=
1
2
1
2n+1
-
1
2n+3
),
∴Tn=
1
2
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)=
1
2
1
3
-
1
2n+3
)=
n
6n+9
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)與求和,考查裂項(xiàng)法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x+2|-|x-4|.(x∈R)
(1)解不等式f(x)≥0;
(2)若關(guān)于x的不等式f(x)≥m的解集是非空集合,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)ex(a>0)的導(dǎo)函數(shù)y=f′(x)的兩個(gè)零點(diǎn)為-3和0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的極小值為-1,求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-3x+b
3x+1+a
是奇函數(shù).
(1)求a,b的值;
(2)證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n≥2).
(Ⅰ)求a3、a4,猜想an的表達(dá)式,并加以證明;
(Ⅱ)設(shè)bn=
1
1
an
+
1
an+1
,求證:對(duì)任意的自然數(shù)n∈N*都有b1+b2+…+bn
n
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,所得數(shù)據(jù)如表所示:
x681012
y2356
畫出上表數(shù)據(jù)的散點(diǎn)圖如圖所示
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a

(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)記憶力為9的學(xué)生的判斷力
( 其中
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,
(1)求異面直線BD與B1C所成角的余弦值;
(2)求證:平面ACB1⊥平面B1D1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,AA1=4,D為BC中點(diǎn),
(1)求證:A1B∥面C1AD;
(2)求異面直線A1B與C1D所成角的余弦值;
(3)求平面ADC1與平面ABA1所成銳二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a|
x2-a
x-2
=1},集合B={x|
x+a
x2-2
=1},則集合B是否可以是單元素?若可以,用列舉法表示集合A,若不可以,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案