19.已知某幾何體的三視圖(如圖),其中俯視圖和側(cè)(左)視圖都是腰長(zhǎng)為4的等腰直角三角形,正(主)視圖為直角梯形,則此幾何體的體積V的大小為( 。
A.$\frac{35}{3}$B.12C.16D.$\frac{40}{3}$

分析 由三視圖知幾何體為四棱錐,其直觀圖如圖所示,即可得出.

解答 解:由三視圖知幾何體為四棱錐,其直觀圖如圖:
四棱錐的高為4,底面為直角梯形的面積S=$\frac{1+4}{2}$×4=10,
∴幾何體的體積V=$\frac{1}{3}$×10×4=$\frac{40}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.A、B是單位圓O上的動(dòng)點(diǎn),且A、B分別在第一、二象限.C是圓O與x軸正半軸的交點(diǎn),△AOB為正三角形.記∠AOC=α.
(Ⅰ)若A點(diǎn)的坐標(biāo)為$(\frac{3}{5},\frac{4}{5})$.求$\frac{{{{sin}^2}α+sin2a}}{{{{cos}^2}α+cos2α}}$的值;
(Ⅱ)求|BC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(a)>f(8-a),則a的取值范圍是( 。
A.(-∞,4)B.(-4,0)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某城市理論預(yù)測(cè)2014年到2018年人口總數(shù)y (單位:十萬(wàn))與年份(用2014+x表示)的關(guān)系如表所示:
年份中的x01234
人口總數(shù)y5781119
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程$\stackrel{∧}{y}$=bx+a;
(3)據(jù)此估計(jì)2019年該城市人口總數(shù).
(參考數(shù)據(jù):0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)
參考公式:線性回歸方程為$\hat y=bx+a$,其中 $b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.先后任意地拋一枚質(zhì)地均勻的正方體骰子兩次,所得點(diǎn)分別記為a和b,則函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx存在極值的概率為(  )
A.$\frac{13}{36}$B.$\frac{17}{36}$C.$\frac{19}{36}$D.$\frac{23}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知半徑為$\frac{2\sqrt{3}}{3}$的球內(nèi)接一個(gè)圓錐,圓錐的軸截面SAB是等邊三角形,O1為圓錐底面直徑AB的中點(diǎn),O為球心,動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周)運(yùn)動(dòng),若AO⊥OP,則點(diǎn)P形成的軌跡的長(zhǎng)度為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),數(shù)列{an}滿足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,設(shè)Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$,若Sn≥$\frac{3t}{4n}$恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列.
(1)設(shè)a1=1,a4=8.
①若$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2n}}$=M($\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$),n∈N*,求實(shí)數(shù)M的值;
②若在$\frac{1}{{a}_{1}}$與$\frac{1}{{a}_{4}}$中插入k個(gè)數(shù)b1,b2,…,bk,使$\frac{1}{{a}_{1}}$,b1,b2,…,bk,$\frac{1}{{a}_{4}}$,$\frac{1}{{a}_{5}}$成等差數(shù)列,求這k個(gè)數(shù)的和Sk
(2)若一個(gè)數(shù)列{cn}的所有項(xiàng)都是另一個(gè)數(shù)列{dn}中的項(xiàng),則稱(chēng){cn}是{dn}的子數(shù)列,已知數(shù)列{bn}是公差不為0的等差數(shù)列,b1=a1,b2=a2,bm=a3,其中m是某個(gè)正整數(shù),且m≥3,求證:數(shù)列{an}是{bn}的子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若數(shù)列{an}是等差數(shù)列,首項(xiàng)a1>0,a2015•a2016<0,a2015+a2016>0,使前n項(xiàng)和Sn>0成立最大自然數(shù)n是( 。
A.4 029B.4 030C.4 031D.4 032

查看答案和解析>>

同步練習(xí)冊(cè)答案