【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論:
①當(dāng)x>1時,甲走在最前面;
②當(dāng)x>1時,乙走在最前面;
③當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分)
【答案】③④⑤
【解析】解:路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為:
, ,f3(x)=x,f4(x)=log2(x+1);
它們相應(yīng)的函數(shù)模型分別是指數(shù)型函數(shù),冪函數(shù),一次函數(shù),和對數(shù)型函數(shù)模型;
①當(dāng)x=2時,f1(2)=3,f2(2)=8,∴該結(jié)論不正確;
②∵指數(shù)型的增長速度大于冪函數(shù)的增長速度,∴x>1時,甲總會超過乙的,∴該結(jié)論不正確;
③根據(jù)四種函數(shù)的變化特點,對數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時甲、乙、丙、丁四個物體重合,從而可知當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最后面,∴該結(jié)論正確;
④結(jié)合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,∴該結(jié)論正確;
⑤指數(shù)函數(shù)變化是先慢后快,當(dāng)運動的時間足夠長,最前面的動物一定是按照指數(shù)型函數(shù)運動的物體,即一定是甲物體,∴該結(jié)論正確;
∴正確結(jié)論的序號為:③④⑤.
故答案為:③④⑤.
根據(jù)指數(shù)型函數(shù),冪函數(shù),一次函數(shù)以及對數(shù)型函數(shù)的增長速度便可判斷每個結(jié)論的正誤,從而可寫出正確結(jié)論的序號.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實數(shù)x,使sinx+cosx= ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin( x+ )是偶函數(shù);
④函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù)y=cos2x的圖象.
其中正確命題的序號是(把正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示,在這些用戶中,用電量落在區(qū)間[150,250)內(nèi)的戶數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項是1的兩個數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當(dāng)x>0時,f(x)> 恒成立,求正整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的表達式;
(2)若f(x)>a在x∈[﹣1,1]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時,有xf′(x)﹣f(x)<0恒成立,則不等式x2f(x)>0的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù)f(x)=x3+bx2+cx+d(a,b,c∈R)過點(3,0),且函數(shù)f(x)在點(0,f(0))處的切線恰好是直線y=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=9x+m﹣1,若函數(shù)y=f(x)﹣g(x)在區(qū)間[﹣2,1]上有兩個零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017南陽一中四模】設(shè), 滿足約束條件若目標(biāo)函數(shù)的最小值為,則實數(shù)的值為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com