16.在正方體ABCD-A1B1C1D1中,點P在線段AD'上運動,則異面直線CP與BA'所成的角θ的取值范圍是$0<θ≤\frac{π}{3}$.

分析 由A'B∥D'C,得CP與A'B成角可化為CP與D'C成角,由此能求出異面直線CP與BA′所成的角θ的取值范圍.

解答 解:∵A'B∥D'C,
∴CP與A'B成角可化為CP與D1C成角.
∵△AD'C是正三角形可知當(dāng)P與A重合時成角為$\frac{π}{3}$,
∵P不能與D'重合因為此時D'C與A'B平行而不是異面直線,
∴$0<θ≤\frac{π}{3}$.
故答案為:$0<θ≤\frac{π}{3}$.

點評 本題考查直線與平面所成角的取值范圍的求法,是中檔題,解題時要注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,船甲以每小時30公里的速度向正東航行,船甲在A處看到另一船乙在北偏東60°的方向上的B處,且$AB=30\sqrt{3}$公里,正以每小時$5\sqrt{3}$公里的速度向南偏東60°的方向航行,行駛2小時后,甲、乙兩船分別到達(dá)C、D處,則CD等于$10\sqrt{3}$公里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了調(diào)查每天人們使用手機的時間,我校某課外興趣小組在天府廣場隨機采訪男性、女性用戶各50 名,其中每天玩手機超過6小時的用戶列為“手機控”,否則稱其為“非手機控”,調(diào)查結(jié)果如下:
手機控非手機控合計
男性262450
女性302050
合計5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“手機控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機控”和“非手機控”的人數(shù);
(3)從(2)中抽取的5人中再隨機抽取3人,記這3人中“手機控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.456[0.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在二項式${({\root{3}{x}-\frac{2}{x}})^n}$的展開式中,所有項的二項式系數(shù)之和為256,則常數(shù)項為112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=-x2-3,g(x)=2xlnx-ax,且函數(shù)f(x)與g(x)在x=1處的切線平行.
(Ⅰ)求函數(shù)g(x)在(1,g(1))處的切線方程;
(Ⅱ)當(dāng)x>0時,g(x)-f(x)≥0恒成立,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影為5,則$|\overrightarrow a-2\overrightarrow b|$的模為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的表面積為$10+2\sqrt{5}+6\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,三邊a,b,c的對角分別為A,B,C,若a2+b2=2018c2,則$\frac{2sinAsinBcosC}{{1-{{cos}^2}C}}$=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=(x-2)ex-$\frac{k}{2}{x^2}$+kx(k是常數(shù),e是自然對數(shù)的底數(shù),e=2.71828…)在區(qū)間(0,2)內(nèi)存在兩個極值點,則實數(shù)k的取值范圍是(1,e)∪(e,e2).

查看答案和解析>>

同步練習(xí)冊答案