【題目】設(shè)函數(shù),
(1)若,且在(0,+∞)為增函數(shù),求的取值范圍;
(2)設(shè),若存在,使得,求證:且.
【答案】(1);(2)見(jiàn)解析
【解析】分析:(1)由在(0,+∞)為增函數(shù)可得上恒成立,然后對(duì)的符號(hào)分類討論可得結(jié)果.(2)結(jié)合題意先排除時(shí)不成立,從而得.由得,設(shè),并結(jié)合(1)知,故得,從而,故轉(zhuǎn)化為證成立,變形后通過(guò)令構(gòu)造新函數(shù),可證得,即證得不等式成立.
詳解:(1)當(dāng)時(shí),.
由題意得對(duì)任意恒成立.
當(dāng)時(shí),不等式顯然成立;
當(dāng)時(shí),可得恒成立,
所以,解得;
當(dāng)時(shí),可得恒成立,
所以,解得.
綜上可得.
∴實(shí)數(shù)的取值范圍是.
(2)若,則有 ,
∴在單增,與存在滿足矛盾.
∴.
由,得,
∴.
不妨設(shè),
由(1)知在單調(diào)遞增,
∴,
即.
∴.
又,
∴.
下面證明,
令,則.
于是等價(jià)于證明,即證.
設(shè),
則在恒成立.
∴在單調(diào)遞減,
∴,
從而得證.
于是,即不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交于點(diǎn),曲線與軸交于點(diǎn),求線段的中點(diǎn)到點(diǎn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線和圓的普通方程;
(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)有唯一零點(diǎn);
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若存在實(shí)數(shù)使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,為的中點(diǎn),平面,垂足落在線段上,為的重心,已知,,,.
(1)證明:平面;
(2)求異面直線與所成角的余弦值;
(3)設(shè)點(diǎn)在線段上,使得,試確定的值,使得二面角為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫(huà)出的是某幾何體的三視圖,則該幾何休的表面積為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com