(本小題滿(mǎn)分12分)已知函數(shù),,
(1)      判斷函數(shù)的奇偶性,并證明;
(2) 判斷的單調(diào)性,并說(shuō)明理由。(不需要嚴(yán)格的定義證明,只要說(shuō)出理由即可)
(3) 若,方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為1的區(qū)間,使;如果沒(méi)有,請(qǐng)說(shuō)明理由。(注:區(qū)間的長(zhǎng)度=

(1) 為奇函數(shù),證明:見(jiàn)解析;
(2)時(shí),單調(diào)遞增;,單調(diào)遞減。
(3)方程有根。

解析試題分析:(1)根據(jù)f(-x)=-f(x)可知此函數(shù)是奇函數(shù)。
(2)      分a>1和0<a<1兩種情況研究即可。a>1時(shí),是兩個(gè)增函數(shù)的和,0<a<1時(shí),是兩個(gè)減函數(shù)的和。
從而確定其單調(diào)性與底數(shù)a有關(guān)系。
(3) 當(dāng),,又,再令,
然后判斷g(-1),g(0)的值,從而判斷y=g(x)在(-1,0)上是否存在零點(diǎn),從而達(dá)到證明f(x)=x+1是否在(-1,0)上有根的目的。
(1)   為奇函數(shù)……………………1分
證明:∵的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱(chēng)  …………………2分
…………………………………………3分
所以可知為奇函數(shù)……………………………………………4分
(2) ∵
① 當(dāng)時(shí),單調(diào)遞增,單調(diào)遞減,
所以單調(diào)遞增…………………………………………………6分
②當(dāng)時(shí),單調(diào)遞減,單調(diào)遞增,
所以單調(diào)遞減。
綜上可知時(shí),單調(diào)遞增;單調(diào)遞減。
………………………………………………8分
(3)當(dāng),又
設(shè)…………………………………9分
………………………………………………10分
,故存在零點(diǎn)
即方程有根……………………………………………12分
考點(diǎn):函數(shù)的單調(diào)性,奇偶性,函數(shù)的零點(diǎn)與方程的根的關(guān)系。
點(diǎn)評(píng):掌握判斷函數(shù)奇偶性的方法:一要看定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),二要看f(-x)與f(x)的關(guān)系。
要掌握函數(shù)單調(diào)性的定義,它是證明抽象函數(shù)單調(diào)性的依據(jù)。函數(shù)的零點(diǎn)與方程的根的關(guān)系要搞清楚,它是實(shí)現(xiàn)根與零點(diǎn)的判斷轉(zhuǎn)化的依據(jù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知函數(shù)是奇函數(shù):
(1)求實(shí)數(shù)的值; 
(2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

武漢市某地西瓜從2012年6月1日起開(kāi)始上市。通過(guò)市場(chǎng)調(diào)查,得到西瓜種植成本Q(單位:元/kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:

時(shí)間t
50
110
250
種植成本Q
150
108
150
求:1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西瓜種植成本Q與上市時(shí)間t的變化關(guān)系。
Q=at+b,       Q=,       Q=      a,       Q=a.
2)利用你選取的函數(shù),求西瓜種植成本最低時(shí)的上市天數(shù)及最低種植成本。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
計(jì)算下列各式的值:
(1);     (2) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
已知二次函數(shù)的圖象過(guò)點(diǎn),且與軸有唯一的交點(diǎn).(1)求的表達(dá)式;
(2)當(dāng)時(shí),求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)計(jì)算:
(Ⅰ)
(Ⅱ)  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知二次函數(shù)最大值為,且
⑴求的解析式;
⑵求上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)某公司試銷(xiāo)一種新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)(元/件)之間,可近似看做一次函數(shù)的關(guān)系(圖象如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為S元:
①求S關(guān)于的函數(shù)表達(dá)式;
②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷(xiāo)售單價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一次函數(shù)f(x),滿(mǎn)足f(f(x))=2x-1,求一次函數(shù)f(x)的解析式 。(10分)

查看答案和解析>>

同步練習(xí)冊(cè)答案