【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上一點.
(1)證明:平面ADE⊥平面PAB.
(2)若PE=4EC,O為點E在平面PAB上的投影,,AB=AP=2CD=2,求四棱錐P-ADEO的體積.
【答案】(1)證明見解析(2)
【解析】
(1) 由PA⊥平面ABCD,可得PA⊥AD,又AB⊥AD,則AD⊥平面PAB即可證得結論;
(2) 取AB的中點F可得CF⊥AB,進而有CF⊥面PAB,即EO∥CF,可知O點在線段PF上,由已知可得PO=4OF即,因為,則,因為,代入即可得出結果.
(1)證明:因為PA⊥平面ABCD,平面ABCD,所以PA⊥AD,
又AB⊥AD,PA∩AB=A,所以AD⊥平面PAB,
又平面ADE,所以平面ADE⊥平面PAB;
(2)解:取AB的中點F,
所以CF∥AD,則CF⊥AB,
又PA⊥CF,PA∩AB=A,所以CF⊥面PAB,
則EO∥CF,即O點在線段PF上,
又PE=4EC,所以PO=4OF,,
則,,
,.
科目:高中數(shù)學 來源: 題型:
【題目】某學校組織高一、高二年級學生進行了“紀念建國70周年”的知識競賽.從這兩個年級各隨機抽取了40名學生,對其成績進行分析,得到了高一年級成績的頻率分布直方圖和高二年級成績的頻數(shù)分布表.
成績分組 | 頻數(shù) |
高二
(1)若成績不低于80分為“達標”,估計高一年級知識競賽的達標率;
(2)在抽取的學生中,從成績?yōu)?/span>的學生中隨機選取2名學生,代表學校外出參加比賽,求這2名學生來自于同一年級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)當a=2時,求曲線在點處的切線方程;
(II)設函數(shù),z.x.x.k討論的單調性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“柯西不等式”是由數(shù)學家柯西在研究數(shù)學分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應當稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學家彼此獨立地在積分學中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當且僅當ad=bc(即)時等號成立.該不等式在數(shù)學中證明不等式和求函數(shù)最值等方面都有廣泛的應用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com