【題目】在直四棱柱中,四邊形為平行四邊形,的中點,,.

1)求證:平面平面;

2)求直線與直線所成角的余弦值.

【答案】1)證明見解析

2

【解析】

1)取的中點,連接,在矩形中,得到,易得平面,從而得到,利用線面垂直的判定定理得到平面,由直四棱柱的幾何特征,知,有平面,再利用面面垂直的判定定理得到平面平面.

2)建立空間直角坐標系,分別求得的坐標,代入公式求解.

1)如圖所示:

的中點,連接.

在直四棱柱中,四邊形為平行四邊形,所以,

在矩形中,因為,

所以,

所以,所以

因為,,所以,所以,

因為平面,所以,

因為,所以平面,所以,

因為,所以平面,所以平面,

因為平面,所以平面平面;

2)建立如圖的坐標系

,,,

所以,,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術(shù);蘊含了極致的數(shù)學美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計圖,其中的4個小圓均過正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機取一點,則該點取自黑色部分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)

1的極小值點;

2)函數(shù)有且只有1個零點;

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則

上述說法正確的序號為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)一個袋子里有紅、黃、藍色小球各一個現(xiàn)每次從袋子里取出一個球(取出某色球的概率均相同),確定顏色后放回,直到連續(xù)兩次均取出紅色球時為止,記此時取出球的次數(shù)為ξ,則ξ的數(shù)學期望為_____ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的幾何體中,四邊形為長方形,平面,平面,且,上一點,且.

1)求證:平面;

2)若,,求此多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前,青蒿素作為一線抗瘧藥品得到大力推廣某農(nóng)科所為了深入研究海拔因素對青蒿素產(chǎn)量的影響,在山上和山下的試驗田中分別種植了株青蒿進行對比試驗.現(xiàn)在從山上和山下的試驗田中各隨機選取了株青蒿作為樣本,每株提取的青蒿素產(chǎn)量(單位:克)如下表所示:

編號位置

山上

山下

1)根據(jù)樣本數(shù)據(jù),試估計山下試驗田青蒿素的總產(chǎn)量;

2)記山上與山下兩塊試驗田單株青蒿素產(chǎn)量的方差分別為,,根據(jù)樣本數(shù)據(jù),試估計的大小關(guān)系(只需寫出結(jié)論);

3)從樣本中的山上與山下青蒿中各隨機選取株,記這株的產(chǎn)量總和為,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為直角梯形,ABCD,ABAD,PA⊥平面ABCDE是棱PC上一點.

1)證明:平面ADE⊥平面PAB.

2)若PE4EC,O為點E在平面PAB上的投影,,ABAP2CD2,求四棱錐PADEO的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,其圖象關(guān)于直線對稱.給出下面四個結(jié)論:①將的圖象向右平移個單位長度后得到函數(shù)圖象關(guān)于原點對稱;②點圖象的一個對稱中心;③;④在區(qū)間上單調(diào)遞增.其中正確的結(jié)論為(

A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有兩個極值點,試求實數(shù)的取值范圍;

2)若,求證:.

查看答案和解析>>

同步練習冊答案