11.已知$|\overrightarrow b|=3$,$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\frac{2}{3}$,則$\overrightarrow a•\overrightarrow b$為(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.2D.3

分析 直接由數(shù)量積的幾何意義結(jié)合已知求解.

解答 解:∵$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\frac{2}{3}$,
∴$|\overrightarrow{a}|cos$<$\overrightarrow{a},\overrightarrow$>=$\frac{2}{3}$,又$|\overrightarrow b|=3$,
則$\overrightarrow a•\overrightarrow b$=$|\overrightarrow{a}||\overrightarrow|cos$<$\overrightarrow{a},\overrightarrow$>=$\frac{2}{3}×3=2$.
故選:C.

點評 本題考查平面向量的數(shù)量積運算,考查了向量在向量方向上投影的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x_i}=80$,$\sum_{i=1}^{10}{y_i}=20$,$\sum_{i=1}^{10}{{x_i}{y_i}}=184$,$\sum_{i=1}^{10}{x_i^2}=720$.
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為12千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}y{\;}_i^{\;}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.其中$\overline x$,$\overline y$為樣本平均值,線性回歸方程也可寫為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在各項均為正數(shù)的等比數(shù)列{an}中,若2a4+a3-2a2-a1=8,則2a5+a4的最小值為12$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個樹形圖:

易知第三行有白圈5個,黑圈4個.我們采用“坐標(biāo)”來表示各行中的白圈、黑圈的個數(shù).比如第一行記為(1,0),第二行記為(2,1),第三行記為(5,4).照此規(guī)律,第n行中的白圈、黑圈的“坐標(biāo)”為(xn,yn),則$\underset{lim}{n→∞}$$\frac{{x}_{n}}{{y}_{n}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,勘探隊員朝一座山行進(jìn),在前后兩處觀察山頂?shù)难鼋鞘?0度和45度,兩個觀察點之間的距離是200m,則此山的高度為100($\sqrt{3}$+1)(用根式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(3x)=4xlog23+10,則f(2)+f(4)+f(8)+…+f(210)的值等于320.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$\frac{π}{2}$<α<π,且sinα+cosα=$\frac{{\sqrt{10}}}{5}$,則tanα的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等比數(shù)列{an}的公比q為正數(shù),且a3•a7=4a42,則q=( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知動圓P過定點A(-3,0),并且與定圓B:(x-3)2+y2=64內(nèi)切.
(1)求動圓圓心P的軌跡E的方程;
(2)過M(2,1)作直線l交E于A,B兩點,且M恰是AB中點,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案